Hepatic stem cells and progenitors

Daniele Prati, MD

Ospedale Alessandro Manzoni, Lecco

IRCCS Fondazione Policlinico, Mangiagalli e Regina Elena, Milan,

Italy

Liver Stem Cells

- Multidisciplinary field of hepatology
 - Physiology of liver regeneration
 - Liver disease pathogenesis
 - Liver oncology
 - Cell and tissue banking and manipulation
 - Experimental treatments
- Interest in the field of liver stem cells is constantly increasing

Liver Stem Cells

- Stem cell therapies offer the opportunity to transform the approach to hepatic disease.
- Although current pharmacological therapy may target specific pathways or receptors, stem cell therapies can provide a living agent able to influence a range of biological processes.
- The potential to enhance hepatic regeneration after partial hepatectomy in advanced cirrhosis or provide a bridge to orthotopic liver transplantation has focused research.

Potency and hierarchy of stem cells

1. Totipotent stem cells

 can differentiate into embryonic and extraembryonic cell types.
Can construct a complete, viable, organism.

2. Pluripotent stem cells

Can differentiate into nearly all cells, i.e. cells derived from any of the three germ layers

3. Multipotent stem cells

Can differentiate into a number of cells, but only those of a closely related family of cells. E.g.: HeSC

4. Oligopotent stem cells

Can differentiate into only a few cells, E.g.: lymphoid or myeloid stem cells

Stem cells with potential clinical use

Cancer stem cells

Outline of the presentation

- Overview of intrahepatic cell compartment
- Clinical trials on stem cell transplantation in the treatment of liver disease
- Liver stem cells and cancer

Outline of the presentation

- Overview of intrahepatic cell compartment
- Clinical trials on stem cell transplantation in the treatment of liver disease
- Liver stem cells and cancer

The adult human liver is a complex tissue composed of different mature elements

- Accordingly, the intrahepatic stem cell population is likely an heterogeneous pool
- Possible immunophenotypic/functional overlap between stem cells of different origins

Cytometry Part A • 77A: 31–40, 2010

Simultaneous Characterization of Progenitor Cell Compartments in Adult Human Liver

Laura Porretti,¹ * Alessandra Cattaneo,¹ Federico Colombo,¹ Raffaella Lopa,¹ Giorgio Rossi,² Vincenzo Mazzaferro,³ Carlo Battiston,³ Gianluca Svegliati-Baroni,⁴ Francesco Bertolini,⁵ Paolo Rebulla,¹ Daniele Prati^{1,6}

	DONORS $(n = 10)$	PATIENTS $(n = 20)$	Р
	Median (range)	Median (range)	
Hematopoietic stem cells			
CD34 ⁺ /CD45 ⁺	0.05 (0.01-0.2)	0.2 (0.03-1)	0.01
CD133-2 ⁺ /CD45 ⁺	0.08 (0.01-0.33)	0.08 (0.01-1)	NS
Endothelial progenitors			
KDR ⁺ /CD146 ⁺ /CD45 ⁺	0.025 (0-0.22)	0.11 (0-0.17)	NS
KDR ⁺ /CD146 ⁺ /CD45 ⁻	0.02 (0-0.13)	0.13 (0.01-0.77)	0.02
Epithelial stem cells			
CD29 ⁺ /CD49f ⁺ /CD45 ⁻	3.5 (0.7-13.6)	2.7 (0.1-18.4)	NS
Mesenchymal stem cells			
CD73 ⁺ /CD105 ⁺ /CD45 ⁻	0.6 (0.4-2.5)	0.6 (0.1-3.7)	NS

Table 1. Commitment of intrahepatic stem cells towards different lineages

Median percentages (range) of freshly isolated mononuclear liver cell fraction.

The groups were compared using the Mann-Whitney test.

P values of <0.05 were considered significant.

Cytometry Part A • 77A: 31–40, 2010

Simultaneous Characterization of Progenitor Cell Compartments in Adult Human Liver

Laura Porretti,¹ * Alessandra Cattaneo,¹ Federico Colombo,¹ Raffaella Lopa,¹ Giorgio Rossi,² Vincenzo Mazzaferro,³ Carlo Battiston,³ Gianluca Svegliati-Baroni,⁴ Francesco Bertolini,⁵ Paolo Rebulla,¹ Daniele Prati^{1,6}

- Hematopoietic
- Endothelial (ECFCs)
- Endothelial (CFU-ECs)
- Epithelial
- Mesenchymal

Figure 4. Three-dimensional plot of liver stem and progenitor cells analyzed in a single tube combination of EpCAM/KDR/7-AAD/CD34/ Thy-1 (CD90)/CD45. FACSDiva files, adequately compensated as reported in the text, were exported as FCS 2.0 in Paint-a-gate software. The following gating strategy was then applied: L-HSCs (viable CD45⁺/CD34⁺ cells, yellow dots), ECFCs (viable CD45⁻/KDR⁺ cells, black dots), CFU-ECs (viable CD45⁺/KDR⁺ cells, blue dots), L-EpPCs (viable CD45⁻/EpCAM⁺ cells, green dots), L-MSCs (viable CD45⁻/Thy-1⁺ cells, violet dots). [Color figure can be viewed in the online issue, which is available at www.interscience.wiley.com.]

Liver cell differentiation from epithelial precursors

Tanaka M, J Biochem 2011

Intrahepatic Hematopoietic SC and progenitors - Issues of potential clinical importance

¹Harb R, Hepatology 2009 ; ²Golden Mason L, Hepatology 2000; ³rev. by Duncan A, Gastroenterology 2009; ⁴Russo FP, Gastroenterology 2006); ⁵Xia S, Blood 2009.

Endothelial and hematopoietic precursors share common mesodermal origin

Timmermans F, J Cell Mol Med 2009

Intrahepatic EPC – Why should be further studied?

- Novel potential antitumoral strategies
 - inhibition of EPC to retard tumor angiogenesis and vasculogenisis;
 - In situ delivery of antitumoral agents
- Experimental treatment of vascular liver disorders
- Crosstalk with stromal cells experimental treatment of liver fibrosis

Mesenchymal Stem Cells

- Originally identified in bone marrow, but virtually present in all organs
- Plastic adherent, multipotential spindle shaped cells expressing CD73, CD105 and negative for the hematopoietic markers CD14, CD34 and CD45¹
- Self renewal, clonogenic properties, multilineage differentiation potential¹

¹As defined by the International Society for Cytotherapy

Stromal/mesenchymal cells modulate diverse biological processes

Reviewed in Haniffa MA, Haematologica 2009

Outline of the presentation

• Overview of intrahepatic cell compartment

- Clinical trials on stem cell transplantation in the treatment of liver disease
- Liver stem cells and cancer

Approaches of Autologous Stem Cell Therapies

Approach	Cell Source	Intended Objectives
1. Undifferentiated Stem/ progenitor cells	Embryo, Adult stem/progenitors	Liver engraftment, cell differentiation and function
2. Ex vivo differentiated hepatocytes	Embryo, Adult Stem/progenitors IPSCs	Liver engraftment, cell function
3. Bio-Artificial liver support (BALS) systems	Ex vivo differentiated hepatocytes	Extracorporeal support by hepatocyte contact
4. Promoting endogenous processes	Hematopoietic stem cells, BM mesenchymal cells	Matrix & vascular remodeling, immunomodulation, facilitation of resident liver cell proliferation

4. Promoting endogenous processes

•Cell source: Hematopoietic stem cells, BM mesenchymal cells

•**Objective**: Matrix & vascular remodeling, immunomodulation, facilitation of resident liver cell proliferation

•Evidences: Improved physiological parameters in some phase 1 clinical trials¹

•**Comments**: Still limited clinical evidence - MSC problematic: potential increased hepatic fibrosis?

¹Reviewed in Stutchfield BM, Liver Transplantation 2010

Stem cell therapies and clinical trials

- Autologous stem cells derived from BM are the only stem cell types undergone clinical investigation
- 9 cohorts/phase 1 trials investigating BMSCs to enhance hepatic regeneration have been published
- A total of 47 patients with chronic liver failure or inadequate future liver volume prior to partial hepatectomy (17 with HCV)
- Outcome differently assessed (MELD, CP score, liver Volumetry, LFTs)
- The majority of trials (8/9) have observed modest clinical benefit

Phase I/Phase II clinical trials on stem cell therapy in liver cirrhosis, currently recruiting patients

Access: March 10, 2011

BM stem cell mobilization in chronic liver disease

- Research in rodent models suggests that BM stem cells may lodge in the cirrhotic liver after massive bone marrow mobilization and undergo hepatocyte like differentiation (*Liu F, Liver Transpl 2006; Piscaglia AC, Gastroenterology 2007*)
- In two studies, G-CSF has been administered to small cohorts with chronic liver disease (n=8 and n=13) (Gaia S, J Hepatol 2006; Spahr L, Hepatology 2008)
- Clinical improvement has been observed in some cases (n=4) and it could be attributed to the mobilized cells or perhaps to the direct effect of G-CSF itself on endogenous hepatic repair mechanisms (Yannaki e, Exp Hematol 2005; Stutchfield BM, Liver Transplantation 2010)

Outline of the presentation

- Overview of intrahepatic cell compartment
- Clinical trials on stem cell transplantation in the treatment of liver disease
- Liver stem cells and cancer

"Pathological" stem cells: cancer stem cells (tumor initiating cells) can be found in chronic liver disease patients

Craig TJ, NEJM 2006

Cancer stem cells may form new tumors and be responsible for tumor recurrence and metastasis

Craig TJ, NEJM 2006

Cancer stem cells have growth properties similar to normal stem cells

- Self regeneration
- Generation of large progenies of daughter cells
- Can give rise to differentiated cells

Similarly to normal cells, they can be studied in cell cloning assays

Brain tumors: primary human neurosphere

Cancer stem cells in different human tumors

- Leukemia/Lymphoma
- Brain tumors
- Breast tumors
- Prostate tumors
- Colon cancer
- Hepatocellular carcinoma (HCC)

F. Colombo. et al (submitted), 2011

Int. J. Cancer: **120**, 1444–1450 (2007) © 2007 Wiley-Liss, Inc.

CD133 positive hepatocellular carcinoma cells possess high capacity for tumorigenicity

Shengyong Yin¹, Jinjun Li², Chen Hu¹, Xinhua Chen¹, Ming Yao³, Mingxia Yan³, Guoping Jiang¹, Chao Ge², Haiyang Xie¹, Dafang Wan², Shengli Yang^{2,4}, Shusen Zheng^{1*} and Jianren Gu^{2*}

Side Population Purified From Hepatocellular Carcinoma Cells Harbors Cancer Stem Cell–like Properties

Tetsuhiro Chiba,^{1,2} Kaoru Kita,¹ Yun-Wen Zheng,¹ Osamu Yokosuka,³ Hiromitsu Saisho,³ Atsushi Iwama,² Hiromitsu Nakauchi,⁴ and Hideki Taniguchi^{1,5,6}

HEPATOLOGY, Vol. 44, No. 1, 2006

Identification and Characterization of Tumorigenic Liver Cancer Stem/Progenitor Cells

STEPHANIE MA,*^{,‡} KWOK–WAH CHAN,* LIANG HU,[‡] TERENCE KIN–WAH LEE,[§] JANA YIM–HUNG WO,[§] IRENE OI–LIN NG,* BO–JIAN ZHENG,[∥] and XIN–YUAN GUAN[‡]

GASTROENTEROLOGY 2007;132:2542-2556

Current putative liver cancer stem cell markers

Markers	References
1. CD133	Ma <i>et al</i> . (76)
2. CD44	Yang <i>et al.</i> (84)
3. CD90	Yang <i>et al</i> . (80)
4. OV6	Yang <i>et al</i> . (89)
5. SP	Chiba <i>et al</i> . (90)
6. EpCAM	Yamashita et al. (88)

EpCAM, epithelial cell adhesion molecule; SP, side population.

Lee et al, reviewed in Liver International 2009

Potential inhibitors of liver cancer stem cells

Challenges for therapies targeted against cancer stem cells

- Knowledge of identity and functions of "healthy" stem cells and progenitors
- Further definition of pathological pathways in cancer stem cells; is there a common Achille's heel in different types of stem cells?
- Effect of conventional chemotherapy regimens on cancer stem cells: do they provide a competitive advantage to cancer stem cells? Definition of novel treatment strategies
- "Clonal evolution" of cancer stem cells?

Clonal evolution of cancer stem cells from a single HCC mass

The same tumor can contain genetically distinct cell populations with independent tumour initiating capability, but significantly different phenotypical and growth characteristics.

Colombo F, submitted

Summary

- After more than a decade of intensive investigation, stem cell based treatment for liver disease remains a hope.
- No clinical indication outside clinical trials
- Growing interests in physiopathological aspects of liver stem cells in the study of hepatic regeneration and carcinogenesis.