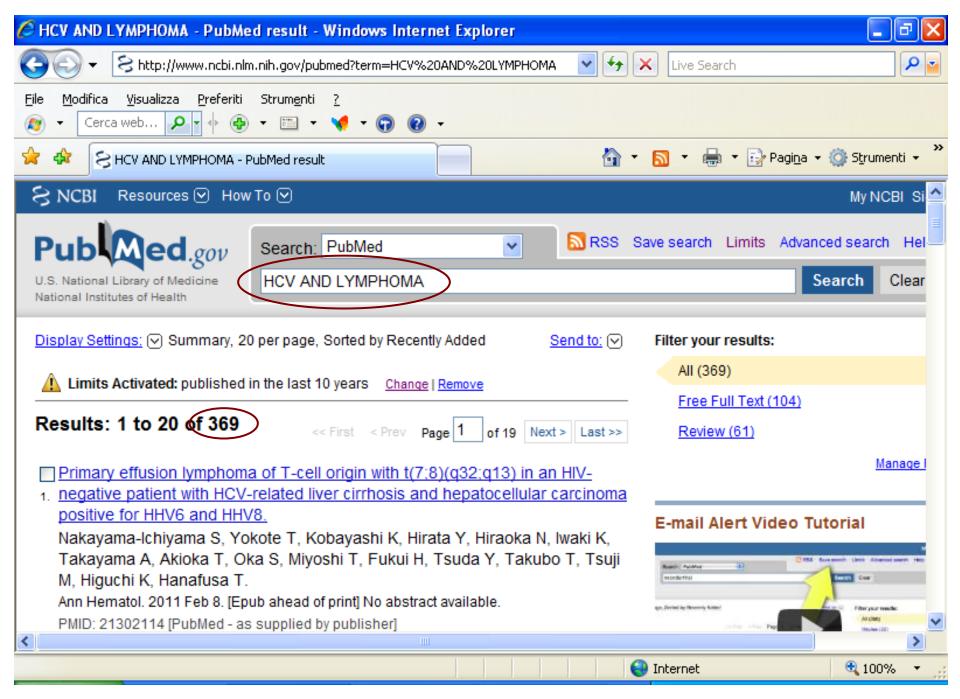


T(14;18) translocation
as a candidate marker
of high-grade transformation
in HCV-associated
Malt lymphomas

Massimo Libra, M.D., Ph.D.

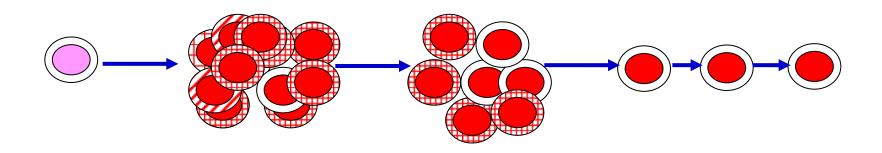

Dept. of Bio-medical Sciences

Section of Pathology and Oncology

University of Catania, Catania (Italy)

Table I. Prevalence of anti-HCV antibodies (Abs) and/or HCV-RNA among Italian case-control studies and case-series of non-Hodgkin's lymphoma patients.

			NHL cases ^a	Anti-HC	V Abs positivity	HCV RNA positivity		
Authors/refs.	Location	All NHL cases		NHL	% (95% CI)	NHL	% (95% CI) ^b	
All studies		2810	2736	539	19.7 (18.2-21.2)	206	14.7 (12.8-16.6	
Case-control studies		1195	1168	272	23.3 (20.9-25.7)	124	21.6 (18.2-24.9)	
Talamini et al (10)	Pordenone/Naples	225	202	40	19.8 (14.3-25.3)			
Mele et al (6)	9 Italian towns	400	400	70	17.5 (13.8-21.2)	60	15.0 (11.5-18.5	
Guida et al (86)	Bari	60	56	12	21.4 (10.7-32.2)			
Montella et al (87)	Naples	101	101	25	24.8 (16.3-33.2)			
Vallisa et al (88)	Piacenza	175	175	65	37.1 (30.0-44.3)	64	36.6 (29.4-43.7	
De Vita et al (89)	Aviano/Pordenone	84	84	20	23.8 (14.7-32.9)			
Musto et al (90)	Foggia	150	150	40	26.7 (19.6-33.7)			
Case series		1615	1568	267	17.0 (15.2-18.9)	82	9.9 (7.9-12.0)	
De Renzo et al (91)	Naples	61	61	12	19.7 (9.7-29.6)			
Pioltelli et al (92)	Northern Italy	300	300	48	160 (11.9-20.1)	41	13.7 (9.8-17.6	
Luppi et al (93)	Modena	157	157	35	22.3 (15.8-28.8)			
Catassi et al (94)	8 Italian towns	143	104	15	14.4 (7.7-21.2)			
Silvestri et al (17)	Udine	470	470	42	8.9 (6.4-11.5)	31	6.6 (4.4-8.8)	
Pivetti et al (95)	Turin	47	47	7	14.9 (4.7-25.1)			
Pioltelli et al (96)	Milan	126	126	26	20.6 (13.6-27.7)			
Musolino et al (97)	Messina	24	24	2	8.3 (0.0-19.4)	5	20.8 (4.6-37.1	
Mazzaro et al (5)	NorthEast Italy	199	197	55	27.9 (21.7-34.2)		92	
Andriani et al (98)	Rome	38	32	8	25.0 (10.0-40.0)	5	15.6 (3.0-28.2	
Ferri et al (99)	Pisa	50	50	17	34.0 (20.9-47.1)		STATE STATESTICAL	

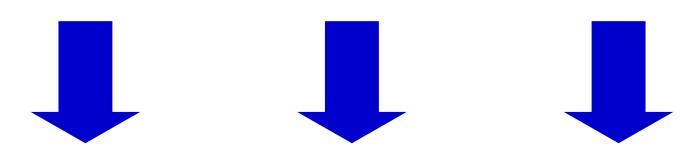


First International Course of Translational Hepatology, Florence, 2011

NATURAL HISTORY OF B-CELL LYMPHOMA

NORMAL B LYMPHOCYTE

POLICLONAL HYPERPLASIA OLIGOCLONAL HYPERPLASIA MONOCLONAL LYMPHOMA

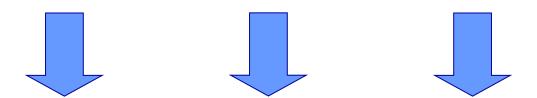

ANTIGENIC STIMULATION

GENETIC ALTERATIONS

Chronic inflammation and antigenic stimulation may be caused by infection of:

- Helicobacter pylori
- Chlamydia psittaci
- Epstein-Barr Virus
- Human Immunodeficiency Virus
- Hepatitis C Virus

In the context of genetic alterations, previous studies have suggested a role for t(14;18) translocation in the development of lymphoproliferative disorders of HCV-infected individuals



Zignego <i>et al</i> Hepatology, 2000			go <i>et al</i> M ed., 2002	Libra <i>et al</i> Leukemia, 2003		
Patient	t(14;18)	Patient	t(14;18)	Patient	t(14;18)	
HCV + MC	5/7 (71%)	HCV + MC	28/37 (76%)	HCV + NHL	8/39 (20%)	
HCV	13/50 (26%)	HCV	30/101 (38%)	NHL/HCV-	3/101 (3%)	

MALT Lymphoma

- MALT lymphomas are extra-nodal lymphomas and are typically indolent.
- The most common site of the disease is the stomach. Gastric MALT lymphoma is caused frequently by Helicobacter pylori infection.
- MALT lymphomas can be cured in many cases by antibiotics against H. pylori.
- However, approximately 15-20% of MALT lymphomas may develop into high-grade lymphomas.

We recently show for the first time that t(14;18) clusters in HCV-associated Malt lymphomas (Libra *et al*, J Hepatol. 2008)

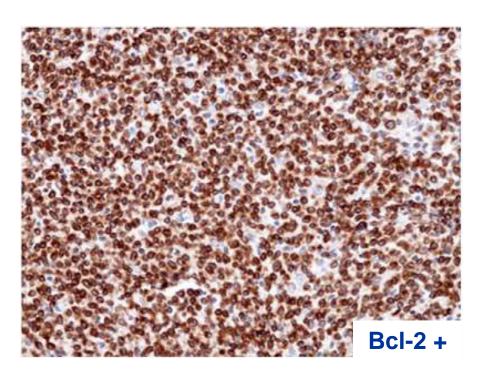
It has been demonstrated that t(14;18) occurs in high-grade lymphomas derived from low-grade including Malt lymphomas (Capello *et al*, Blood 2000)

Therefore we hypothesized that t(14;18) may play a role in the high-grade transformation of Malt lymphomas, especially in those occurred among HCV+ patients

Cases

- ·58 DLBCL samples derived from MALT lymphoma were included for the analysis
- · A series of 124 de novo DLBCL were included as control group
- •DLBLC samples derived from FL were excluded

Frequency of t(14;18) in 58 transformed DLBCL patients with and without HCV infection

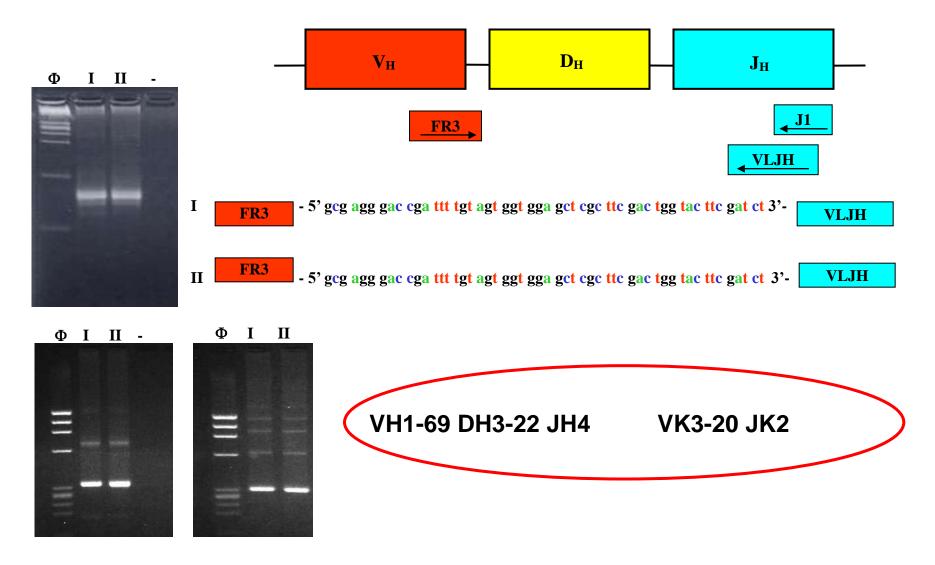

T(14;18)	HCV+	HCV-
+	4	2
-	9	43

P = 0.01; Fisher's Exact Test

Sequencing of the breakpoint in MALT and in the transformed DLBCL

	Bcl-2 3109	N region	$\underline{\mathbf{J}}_{\underline{\mathbf{H}}}6$ 1483		
MALT I diagnosis	tgcagtggtg	tttggttgcat	actactacta		
Transformed DLBCL	tgcagtggtg	tttggttgcat	actactacta		

Immunophenotyping

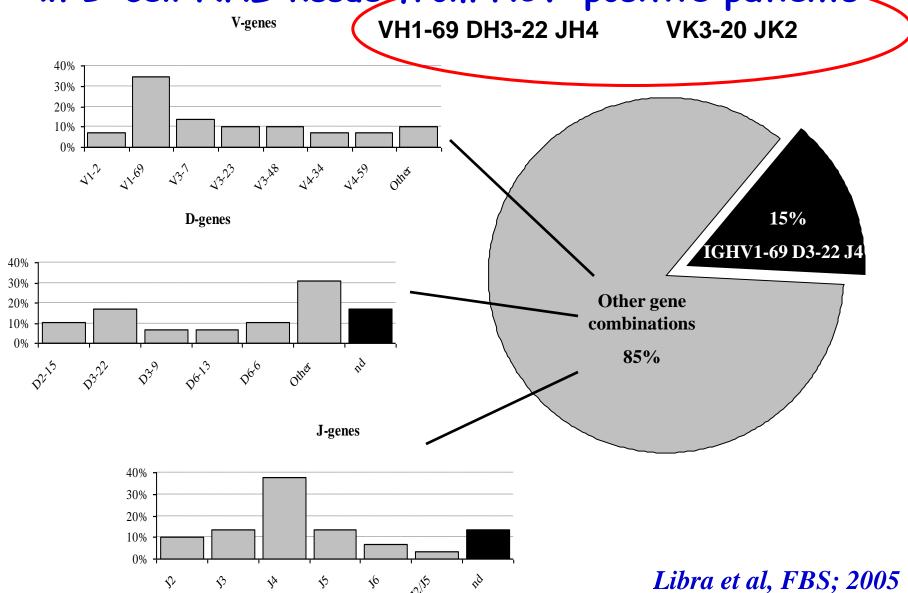


The overexpression of Bcl-2 indicates that this genetic abnormality may sustain survival of B-cells preventing apoptosis

The null expression of <u>CD10</u> and <u>Bcl-6</u> excludes the follicular origin of the tumor samples harboring t(14;18) translocation

To further confirm that the transformed DLBCL originated from the metachronous MALT lymphoma, analysis of B-cell clonality was also performed by VDJ rearrangement

Immunoglobulin gene analysis



First International Course of Translational Hepatology, Florence, 2011

The results show that these tumors were clonally identical

The combination of genes in the heavy and light chains was the most common used among HCV-associated lymphomas previously reported

Distribution of VH, DH, and JH genes rearranged in B-cell NHL tissue from HCV-positive patients

First International Course of Translational Hepatology, Florence, 2011

Further molecular characterization of t(14;18) cases

It has been shown that SHM process of multiple oncogens occurs in B-NHL clustering within RGWY motifs (Pasqualucci L, Nature 2001)

Our previous studies show that this phenomenon was not observed in HCV-associated NHL (Libra M, J Pathol 2005)

Similarly, it was observed in t(14;18) cases analyzed in the present study

Further molecular characterization of t(14;18) cases

90 M Libra et al

Table 3. Features of PIM-1, PAX-5, RhoH/TTF, c-MYC, and BCL-6 mutations in HCV-associated NHL

Locus	Mutations/ 100 bp	Deletions or insertions	Single bp substitutions	Transitions/ transversions	G+C	A + T	G + C mutations/ 100 bp [†]	A+T Mutations/ 100 bp*	RGYW [†]
PIM-1	0.19 (0.05-0.28)	I	13	9/4 (2.25)	11	2	0.20	0.079	4 (p = 0.88)
PAX-5	0.17 (0.06-0.58)	0	15	11/4 (2.75)	1.5	0	0.26	0	6 (p = 0.36)
RhoH/TTF	0.22 (0.06-0.89)	1	19	11/8 (1.37)	9	10	0.18	0.26	8 (p = 0.18)
c-MYC exon 1	0.038	0	4	4/0	4	0	0.067	0	2 (p = 0.52)
c-MYC exon 2	0	0	0	0/0	0	0	0	0	0
Total	NA	2	51	35/16 (2.18)	39	12	0.19	0.084	20 (p = 0.08)
BCL-6	0.16 (0.07-0.27)	0	34	19/15 (1.26)	19	15	0.18	0.15	12 ($p = 0.01$)

^{*} Calculated from the number of G + C and A + T nucleotides in the wild-type gene sequences.

Similarly, it was observed in t(14;18) cases analyzed in the present study

[†] The frequency of mutations within RGYW motifs was compared with the frequency of mutations outside RGYW motifs by the χ^2 test.

Further molecular characterization of t(14;18) cases

It has been shown that SHM process of multiple oncogens occurs in B-NHL clustering within RGWY motifs (Pasqualucci L, Nature 2001)


Our previous studies show that this phenomenon was not observed in HCV-associated NHL (Libra M, J Pathol 2005)

Similarly, it was observed in t(14;18) cases analyzed in the present study

Taken together these data indicate that t(14;18) may be considered a marker of high-grade transformation in HCV-associated Malt lymphomas

FUTURE DIRECTIONS

- ✓FISH analysis in t(14;18) DLBCL cases
- √ Microarray analysis of this subset of NHL
- ✓ Gene set enrichment analysis (GSEA)

Acknowledgments

Nadia Vella

Linda Zignego

Saverio Candido

University of Florence

Ferdinando Nicoletti

Antonino Carbone

University of Catania

Valli De Re

National Cancer Institute, Aviano

Giuseppe Longo

Oncohematology Unit

San Vincenzo Hospital, Taormina