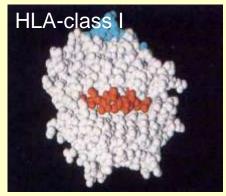
HLA and HCV versus innate and adaptive immune response

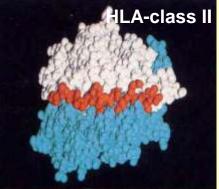
Valli De Re

FIRST INTERNATIONAL COURSE ON TRANSLATIONAL HEPATOLOGY FOCUS ON HCV DISEASE FLORENCE, MARCH 9-11, 2011



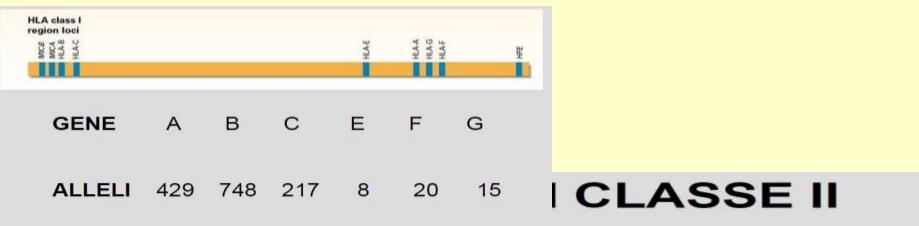
Presidents of the Course Prof. Giacomo Laffi - Prof. Anna Linda Zignega

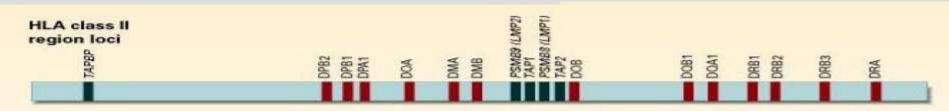
> Honorary President Prof. Poolo Gentilini



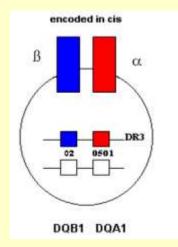
HL A

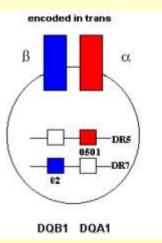
MHC-I: peptide di 8-10 AA MHC-II: peptide anche di più di 30 AA

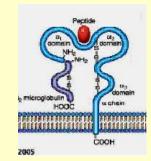

_, Class I → Class II

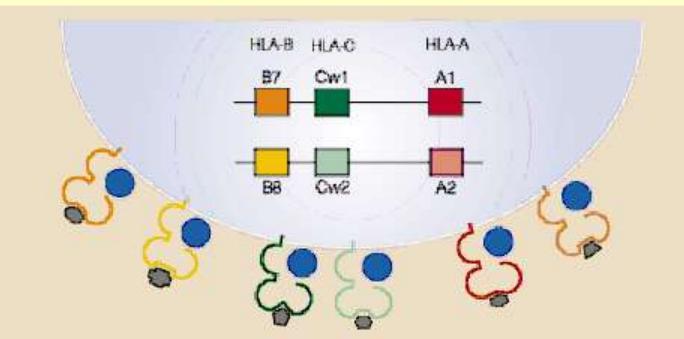

Cytotoxic activity "Helper" activity

Regulator activity of NK and T-NK cells


GENE	ALLELI	GENE	ALLELI	GENE	ALLELI	
DPA1	23	DQA1	32	DRA	3	
DPB1	121	DQB1	69	DRB1	511	
TAP1	7	DQB2	0	DRB2	1	
TAP2	4	DQB3	0	DRB3	31	
		DOA	12	DRB4	10	
		DOB	9	DRB5	15	
		DMA	4	DRB6	3	
		DMB	7	DRB7	2	
				DRB8	1	
	First International Cou	rse of Translation	al Hepatology, Florence, 2011	DRB9	1	

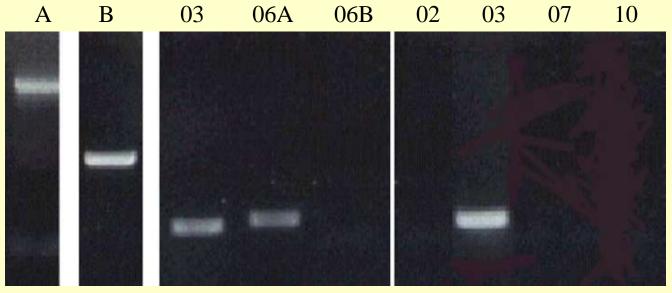

codominance

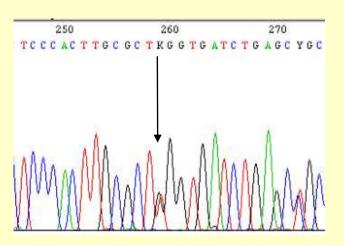

HLA-I


COOH

HOOG

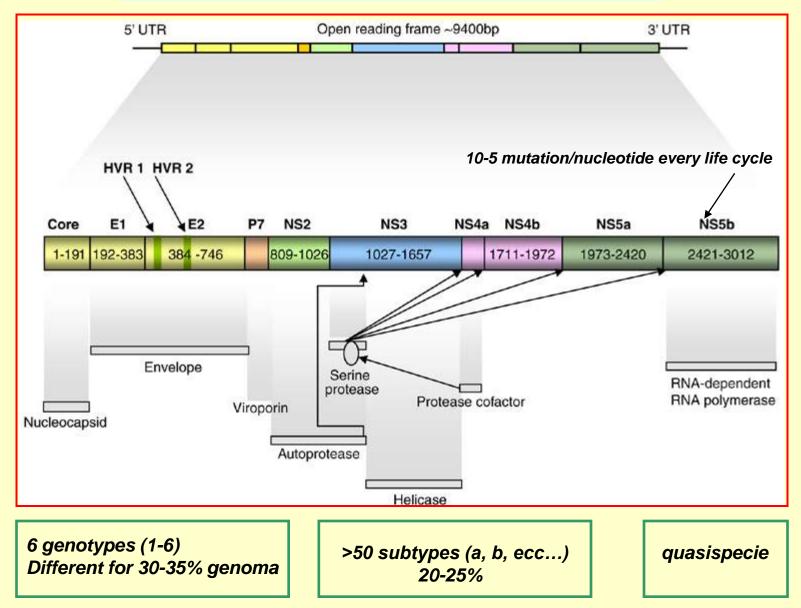
50,000 - 100,000 molecules HLA/cell but ≈1000 different peptides


First International Course of Translational Hepatology, Florence, 2011

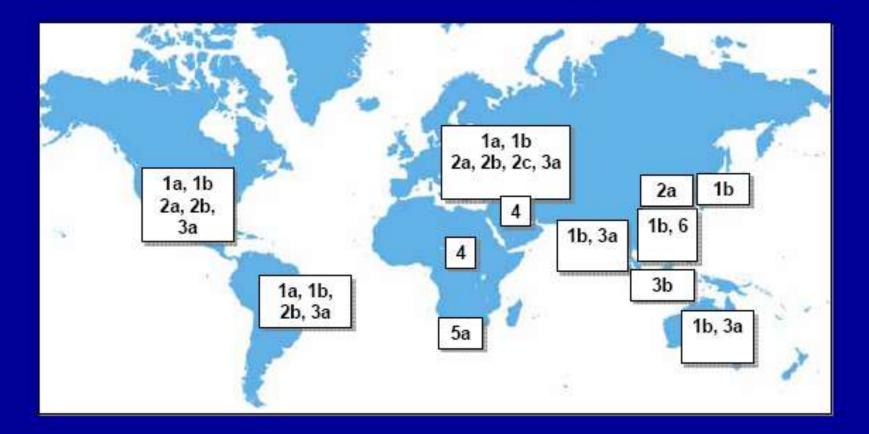

HLA-II

DEFINIZIONE SIEROLOGICA	MOLE	IIZIONE COLARE (ISOLUZIONE)	DEFINI MOLEC (ALTA RISC	OLARE
DR1	DRA	DRB1*01	DRA	DRB1*0101
DR2	"	DRB1*15	55	DRB1*1501
DR2	"	DRB1*16	**	DRB1*1601
DR3	"	DRB1*03	**	DRB1*0301
DR4	"	DRB1*04	**	DRB1*0401
DR5	"	DRB1*11	**	DRB1*1101
DR5	"	DRB1*12	**	DRB1*1201

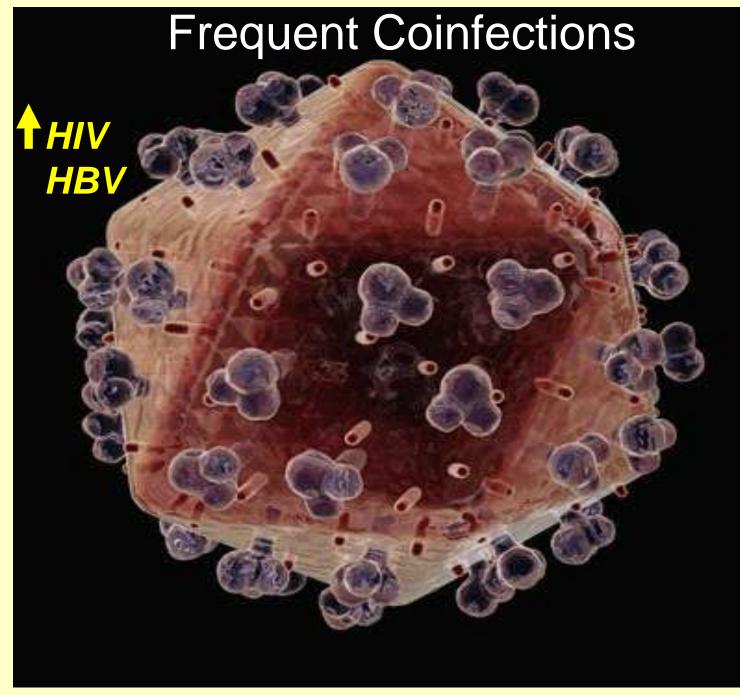
CH0190 exon 3

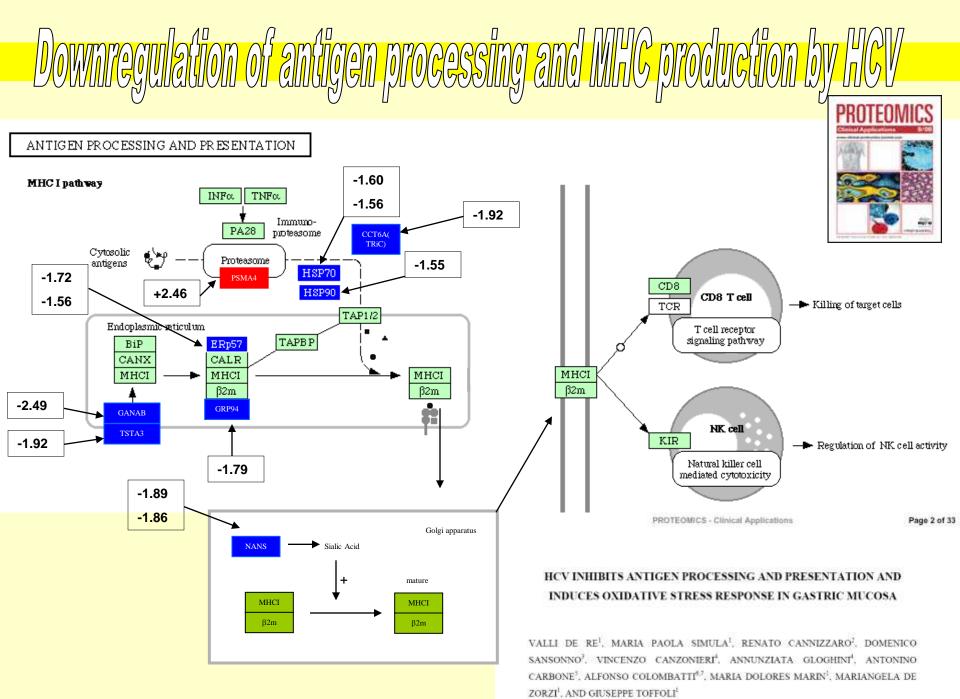

A*0301

TCCCACTTGCGC<u>TTG</u>GTGATCTGAG <u>CTG</u>C


A*1801

TCCCACTTGCGC<u>TGG</u>GTGATCTGAG <u>CCG</u>C


HCV genome hypervariability


HCV: Genotypic variation around the world

Fang JWS et al. Clin Liver Dis. 1997;1:493-514.

First International Course of Translational Hepatology, Florence, 2011

As seen in other infections, in HCV virus infection HLA heterozygote shows advantage for clearance the virus and for progression of end-stage liver disease in chronic HCV+ hepatitis, presumably due to host response towards the greater range of HLAheterozigous peptide presented

Hraber, P., et al. 2007. .

Specific HLA association and HCV persistence, vaccine and antiviral-responses are reported. Table 3A Association of HLA alleles with susceptibility to viral persistence & chronic HCV infection across global population

HLA	Effect	Country	NC	R Chron	icinfection	Reference
				AC	CLD/CHC	
HLA I HLA-B61, Cw3,	VP/HCV infection	Japan	293		60	[69]
HLA B54	VP with CLD	Japan	916	33	97	[68]
HLA B55, -B56, B70	VP	Japan	172		113	[59]
HLA A3, B-35, B-46	VP	Korea	206		137	[109]
HLA A28, A29, B14	HCV infection	Egypt				[55]
HLA A-19	HCV infection	Saudi people.	122		146	[54]
HLA-A10, HLA-B35, HLA-B40 and HLA-Cw3	VP-CLD	Russia				[5]
HLA-A30, B35, B41, Cw2, A1-B35, A9-B8	VP-CLD-LC	Russia			107	[57]
HLA B8, B18	VP-CHC	Ireland		86	141	[60]
HLA C*04	VP	Ireland (Whites)		86	139	[56]
HLA B14	VP & active hepatitis C	Italy	489		117	[130]
HLA B18	Susceptibility to CLD	Spain	116	48	93	[131]
HLA-A*2301 and HLA-Cw*04	VP	USA		231	444	[58]
HLA-Cw*07,	Risk factor for vertical	Italy (infants born to	44 uninfected infants		21	[16]
	infection	HCV+ mothers)	born to HCV+ mothers			0.0
HLA [] HLA DR4, DQB1*0401 DQB1*0402	VP/ HCV infection	Japan	293		60	[69]
HLA DRB1*0405, DQB1*0401	VP with CLD	Japan	916	33	97	[68]
HLA DRB1*0405, DQB1*0401	VP with LC	Japan	1216	50	67	[70]
HLA DQB1*0503	VP with LC	Japan	201	43	60	[132]
HLA DRB1*0301#, DQB1*0201, DQB1*0502	VP/CHC	Thailand	140	43 21	.36	[133]
HLA, DRB1*0803, DQB1*0601 and DQB1*0604	VP	Korea	206		137	[109]
HLA DRB1*0301#	VP	Egypt (Hemophilic and HCV-, HCC+ patients)	15 Healthy & 25 HCV-	10 HCV	+ 15 (HCV- HCC+)	[134]
HLA DR7	HCV infection	Egypt				[55]

Singh, R., et al. 2007.

HLA-DRB1*0701, DRB1*15, DRB4*0101	Viral persistence	UK (European)		85	170	[135]
HLA DQB1*0201	VP-CHC	Ireland		86	141	[60]
HLA DRB1*0701 (HCV 1b)	VP	Ireland (females receiving		84	72	[136]
		HCV 1b contaminated				
		AntiD immunoglobulin)				
HLA DRB1*1001, DRB1*1101	VP/CLD	Italy	179	41	99	[137]
HLA DQB1*0502	VP-CLD	Italy	200	35 42	107	[138]
HLA DR14, DR17	VP-CLD	Italy	70	34	39	[139]
HLA DRB1*0301	VP-CHC	Germany	101		105	[140]
HLA DRB1*07	VP-CLD	German & North Europeans	2045		99	[94]
HLA DR B1*13 and DRB1*14	Susceptibility to infection	German & North Europeans	2045		99	[94]
HLA DR3#	Susceptibility to chronic disease	Spain	116	48	93	[131]
HLA DRB1*13 and DRB1*07	Necro inflammatory activity during infection	Poland			134	[95]
HLA DRB1*13 allele	VP	Poland			134	[95]
DRB1*03# and	CLD/LC	France			233	[141]
DQB1*0201(male gender)						
HLA G*010401, -DRB1*0701,	Risk factor for vertical infection	Italy(infants born to	44 uninfected infants		21	[16]
-DRB1*1401 and homozygosity		HCV+ mothers)	born to HCV+ mothers			
for HLA-G 14bp deletion						
HLA DRB*4001	High viral load	Taiwan				[142]
HLA []] MICA-A4	Susceptibility to CLD	Spain	116	48	93	[131]

VP: Viral persistence/chronic infection; CHC: Chronic hepatitis C; CLD: Chronic liver disease; NC: Normal control; R: Recovered; AC: Asymptomatic carriers; LC: Liver cirrhosis. Common VP alleles: # DRB1*03, DRB1*0701.

HLA-Cw*0602	Protection against vertical infection	Italy (infants born to HCV+ ve mothers)	44 uninfected infa born to HCV+ moth		21	[16
HLA Bw4180/KIR3DS1	HCV carriers	Spain	116	51	47 (L0 54 (H	
HLA-C1/KIR2DL3	VC/protection from	UK		352	685	[62
HLA DQA1*03 and DQB1*0302	VC/Protection from chronic infection	N.European whites	177		104	[144]
HLA-DRB1*0301,DRB1*1101#, DRB1*1201# and HLA-DQB1*0301	Viral clearance	UK (European)		85	170	[135]
HLA DRB1*04, DQA1*03 and DQB1*0301	VC/Protection from chronic infection	UK	134	49	55	[145]
HLA DQB1*0302	Protection from infection	UK	134	49	55	[145]
HLA DRB1*01##. (HCV 1b)	VC	Ireland (females who received HCV 1b contaminated AntiD immunoglobulin)		84	72	[136]
HLA DRB1*0101##, DRB1*0401, DRB1*15	VC/Protection from chronic infection	Ireland		86	141	[60]
HLA DRB1*0101##	Viral clearance	Ireland		73	84	[78, 1
HLA DR5#	Protection from chronic hepatitis C	Italy	489		117	[130]
HLA II HLA DRB1*1601, DQB1*0502	Protection from HCV infection	Sardinia (Thalassemia major for transfusion)	606 healthy & 30 HCV- patients		116	[147]
HLA DRB1*1104, and DRB3*03	Protection from chronic manifestation /carries	Italy	179	41	99	[137]
HLA DRB1*1104,DQB1*0301	VC	Italy	200	35 42	107	[138]
HLA DR 11	VC/Protection from infection	Italy	70	34	29	[139]
HLA DQB1*0301	Protection from HCV related HCC	Italy	144		29	[148]
HLA DRB1*1301 and DQA1*0103	Protection from chronic HCV infection	Germany	101		105	[140]
HLA-DRB1*15011	Viral clearance/ Protection	Germany		21	49	[149]
HLA-DRB1*11(DR5) and HLA-DQB1*03(DQ3)	Protection from CLD	Germany	501		108	[150]

HLA	Effect	Country	NC	R	Chronic infection AC CLC/CHC		Reference	
Viral persistence								
HLA Cw3- DR4-DQB1*0401 or *0402, and HLA-B61-DR4 -DQB1*0401 or 0402	VP/chronic infection	Japan	293			60	[69]	
HLA B54-DRB1*0405-DQB1*0401 haplotype	VP-CLD	Japan	916		33	97	[68]	
HLA DRB1*0405-DQB1*0401 haplotype	VP with LC	Japan	1216		50	67	[70]	
HLA DRB1*0301, DQA1*0501, DQB1*0201	VP	Thailand	140	43	21	36	[133]	
A*01-B*08-Cw*07-DRB1*03011-DQB1*0201	VP-CHC	Ireland		86		141	[60]	
HLA DRB1*15-DQB1*0602	High viral load/increased risk for disease severity	Ireland (viremic females)				57	[71]	
HLA A*11, C*04	VP	Ireland (Whites)		86		139	[56]	
HLA DQA1*0201-DQB1*0201	Susceptibility to Chronic hepatitis C	Italy	179		41	99	[151]	
HLA DR3/MICA-A4/B18	Susceptibility to chronic disease	Spain	116		48	93	[131]	
HLA DRB1*0701-DQA1*0201-DQB1*02 and DRB1*1501-DQA1*01-DQB1*0602	VP-CLD	Poland	103			129	[108]	
HLA DRB1*0301 -DQB1*0201	VP	USA					[77]	
HLA-Cw*04-B*53	VP	USA		231		444	[58]	
Viral clearance								
HLA B44-DRB1*1302-DQB1*0604 and DRB1*1302-DQB1*0604	AC/no progression to CLD	Japan	916		33	97	[68]	
HLA DRB1*0901-DQB1*0303	AC-no LC	Japan	1216		50	67	[70]	
HLA A*03-B*07-DRB1*15-DQB1*0602 and A*02-B*27-Cw*01-DRB1*0101-DQB1*0501	VC/Protection from chronic infection	Ireland		86		141	[60]	
DRB1*0701 and DQB1*02	Stable viral load/slow disease progression	Ireland (viremic females)				57	[71]	
HLA DRB1*1104, DQA1*0501, DQB1*0301 haplotype	Protection from Chronic hepatitis	Italy	179		41	99	[151]	
HLA DRB1*1104, DQB1*0301	VC	Italy	200	35	42	107	[138]	
HLA DRB1*0101 -DQB1*0501 haplotype	Viral clearance (in white subjects)	USA		200		374	[77]	

Table 3C HLA Haplotype association with HCV viral clearance and persistence across global population

HLA-association with HCV infections is not so clear and more influenced by ethnic groups and different HCV-associated status and diseases

META- Analysis

HCV clearance

Table 1 Charac	cteristics of studies in	ncluded in the meta-ar	nalysis			
First author (year) [reference]	Country (ethnicity)	Spontaneous resolution	Persistent infection	Matching	Anti-HCV tests	HLA typing
Alric (1997) [21]	France (European)	25, M/F: 9/16 Age: 40.6±15.7 yr	103, M/F: 58/45 Age: 45.4±12.4 yr	Sex, age, source of HCV infection, HCV-serotype	2G EIA and RIBA	PCR-SSOP
Cramp (1998) [22]	UK (European)	49, M/F: 30/19 Duration: 15.5 (3-42) yr	55, M/F: 31/24 Duration: 14.2 (2-40) yr	Sex, age, source of HCV infection and duration	2G line immunoassay	PCR-SSOP
Minton (1998) [23]	UK (European)	35, M/F: 19/16 Age: 37.9±10.8 yr	138, M/F: 87/51 Age: 37.2±10.1 yr	Sex, age, source of HCV infection	2G ELISA and RIBA	PCR-SSOP
Mangia (1999) [24]	Italy (European)	35	149	Sex, HCV-serotype, not age, not duration	RIBA and 3G EIA	PCR-SSP
Thursz (1999) [25]	European	85, M/F: 37/48 Age: 45±14 yr	170, M/F: 74/96 Age: 50±16 yr	Sex, center, not age	ELISA and RIBA	PCR-SSP
Vejbaesya (2000) [26]	Thailand (Asian)	43 Blood donor M/F: 25/18	57 M/F: 31/18	Sex	2G EIA and RIBA	PCR-SSOP
Alric (2000) [27]	France (European)	63, M/F: 21/42 Age: 42.1±15.4 yr	282, M/F: 150/132 Age: 46±12.3 yr	Age, source of HCV infection and duration, not sex	2G EIA and RIBA	PCR-SSOP
Fanning (2000) [13]	Irish (European)	85 Female	72 Female	From single source	RIBA	Reverse line probe hybridization
Thio (2001) [28]	North America	200, M/F: 166/34 Age: 25.7 yr	374, M/F: 310/64 Age: 27.8 yr	Age, sex, race	2G EIA and RIBA	PCR-SSP PCR- SSCP
Azocar (2003) [29]	Hispanic (European)	40, <mark>M</mark> /F: 33/7 Age: 37.9 yr	72, M/F: 54/18 Age: 39.2 yr	Age, sex	EIA and RIBA	PCR-SSOP PCR- SSP
Spada (2004) [30]	Italy (European)	10, M/F: 5/5 Age: 40.5 (20-61) yr	24,M/F:22/2 Age: 29 (20-56) yr	Not sex, age, source of HCV infection, HCV-serotype	3G ELISA and RIBA	PCR-SSP

EIA: enzyme-immunoassay; RIBA: recombinant immunoblot assay; ELISA: enzyme-linked-immunosorbent assay; 2G: second generation; 3G: third generation; SSOP: sequence-specific oligonucleotide probes; SSP: sequence specific primers; SSCP: single stranded conformational polymorphisms.

Study	Spontaneous resolution n/N	Persistent infection n/N	OR (random) 95%CI
Alric	10/25	10/102	6.13 (2.18, 17.22)
Minton	11/35	11/135	5.17 (2.01, 13.27)
Cramp	9/49	6/55	1.84 (0.60, 5.60)
Mangia	7/35	24/149	1.30 (0.51, 3.32)
Thursz 1	26/85	29/170	2.14 (1.16, 3.94)
Thursz 2	14/57	15/152	2.97 (1.33, 6.65)
Fanning	4/68	4/64	0.94 (0.22, 3.92)
Alric	20/59	25/170	2.97 (1.50, 5.91)
Vejbaesya	2/43	3/57	0.88 (0.14, 5.50)
Thio	15/200	24/374	1.18 (0.61, 2.31)
Azocar	4/40	11/72	0.62 (0.18, 2.08)
Spada	2/10	2/24	2.75 (0.33, 22.92)
Total (95%CI)	124/706	164/1 524	2.02 (1.56, 2.62)

Table 2 Effect of DRB1*1101 allele on self-limiting HCV infection

Table 3 Effect of DQB1*0301 allele on self-limiting HCV infection

Study	Spontaneous resolution	Persistent infection	OR (random)
	n/N	n/N	95%CI
Alric	21/25	28/91	11.81 (3.71, 37.61)
Minton	18/35	33/135	3.27 (1.51, 7.07)
Cramp	26/49	10/55	5.09 (2.10, 12.33)
Mangia	17/33	42/143	2.56 (1.18, 5.53)
Thursz 1	39/85	47/170	2.22 (1.29, 3.82)
Thursz 2	25/57	37/152	2.43 (1.28, 4.61)
Fanning	25/78	18/67	1.28 (0.63, 2.64)
Alric	38/59	45/157	4.50 (2.39, 8.50)
Vejbaesya	24/43	18/57	2.74 (1.20, 6.22)
Thio	49/200	71/374	1.38 (0.92, 2.09)
Azocar	6/40	13/72	0.80 (0.28, 2.30)
Spada	4/10	15/24	0.40 (0.09, 1.81)
Total (95%CI)	292/714	377/1 497	2.36 (1.62, 3.43)

Test for heterogeneity: $\chi^2 = 19.38$, df = 11 (*P*<0.05), $I^2 = 43.2\%$. Test for overall effect: *Z* = 5.30 (*P*<0.00001).

Test for heterogeneity: $\chi^2 = 33.33$, df = 11 (P = 0.0005), $I^2 = 67.0\%$. Test for overall effect: Z = 4.48 (P < 0.00001).

HLA-DRB1*07 is associated with HCV persistence in Europe and Asia.

HLA class-II DRB1*1101 and mainly DQB1*0301 is related to HCV clearance

Association between HLA-DRB1 alleles polymorphism and hepatocellular carcinoma: a meta-analysis

Author	Year	Country/ Region	Number of HCC (M/F), age	Number of controls (M/ F), age	Number of DRB1 alleles studied	HLA genotyping method
Donaldson [11]	2001	Hong Kong	84(79/5),55	124(-/-), NA	13	PCR-SSOP
De Re[12]	2004	Italy	29(-/-), NA	144(-/-), NA	13	PCR-SSP
Yuan [13]*	2004	China	10(-/-), NA	50(30/20),43.7 ± 12.9	3	PCR-SSP
López-Vázquez [14]	2004	Spain	46(27/19),62 ± 8	48(19/29),56 ± 12	11	PCR-SSOP
Yuan [15] [#]	2005	China	10(-/-), NA	50(30/20),43.7 ± 12.9	2	PCR-SSP
Kummee [16]	2007	Thai	50(38/12), 57.5 ± 14.2	100(68/32),50.8 ± 13.9	2	PCR-SSP
El-Chennawi [17]	2008	Egypt	50(45/5),51.16 ± 6.16	50(44/6),48.88 ± 9.22	11	PCR-SSP
Pan [18]	2009	China	62(52/10),53.58	50(29/21),30.12	8	PCR-SSP

NA, not available; PCR-SSOP, PCR-sequence-specific oligonucleotides probes; PCR-SSP, PCR-sequence-specific primer;

These two studies described different allele polymorphisms with the same subjects.

DR1*07

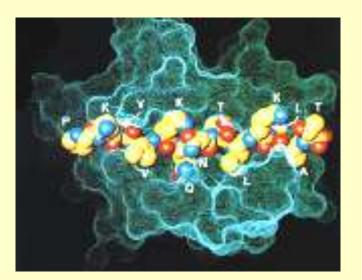
	HCC	;	Contr	ol		Odds Ratio		Odds Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl	Year	M-H, Fixed, 95% Cl	
1.1.1 Asians									
Donaldson,2001	10	84	13	124	27.5%	1.15 [0.48, 2.77]	2001	_	
Yuan,2004	1	10	2	50	1.8%	2.67 [0.22, 32.61]	2005		
Pan,2009	14	62	2	50	5.1%	7.00 [1.51, 32.48]	2009		
Subtotal (95% CI)		156		224	34.4%	2.10 [1.06, 4.14]		\bullet	
Total events	25		17						
Heterogeneity: Chi ² = 4.	20, df = 2	(P = 0	12); l ² = 5	52%					
Test for overall effect: Z	= 2.14 (P	= 0.03)						
1.1.2 Others									
López-Vázquez,2004	12	46	14	48	30.1%	0.86 [0.35, 2.12]	2004		
De Re,2004	7	29	36	144	27.2%	0.95 [0.38, 2.42]	2004		
El-Chennawi,2008	15	50	4	50	8.3%	4.93 [1.50, 16.16]	2008		
Subtotal (95% CI)		125		242	65.6%	1.41 [0.83, 2.42]		◆	
Total events	34		54						
Heterogeneity: Chi ² = 6.	11, df = 2	(P = 0	.05); l² = 6	67%					
Test for overall effect: Z	= 1.26 (P	= 0.21)						
Total (95% CI)		281		466	100.0%	1.65 [1.08, 2.51]		◆	
Total events	59		71						
	79 df =	5 (P = (0.06); l ² =	54%				0.01 0.1 1 10	100
Heterogeneity: Chi ² = 10		- \.							

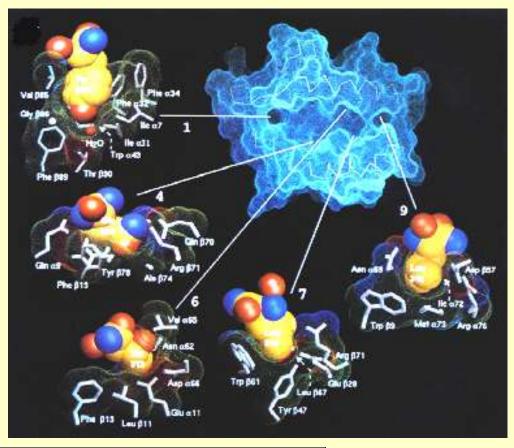
Figure 2 Meta-analysis forest plot of included studies on the association between HLA-DRB1*07 allele and HCC. Each plot shows the effect size and precision for individual studies and for the combined effect. Filled squares are proportional in size to study weights.

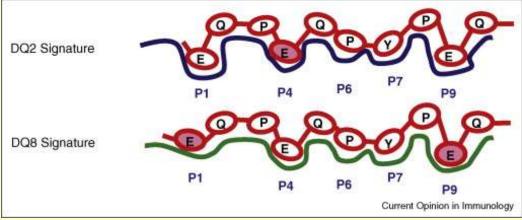
DR1*12

	HCC		Contr	ol		Odds Ratio			Ode	ds Ratio		
Study or Subgroup	Events	Total	Events	Total	Weight	M-H. Fixed. 95% Cl	Year	4	M-H, Fi	xed. 95% C	1	
1.1.1 Asians												
Donaldson,2001	35	84	37	124	41.8%	1.68 [0.94, 3.00]	2001					
Yuan,2005	4	10	2	50	1.0%	16.00 [2.40, 106.73]	2005			-	10	-
Kummee,2007	18	50	31	100	31.7%	1.25 [0.61, 2.56]	2007					
Pan,2009	17	62	8	50	15.4%	1.98 [0.78, 5.08]	2009					
Subtotal (95% CI)		206		324	89.9%	1.73 [1.17, 2.57]				•		
Total events	74		78									
Heterogeneity: Chi ² = 6	.15, df = 3	(P = 0.	10); l ² = {	51%								
Test for overall effect: 2	Z = 2.75 (P	= 0.00	6)									
1.1.2 Others												
López-Vázquez,2004	0	46	3	48	8.1%	0.14 [0.01, 2.78]	2004	+		-		
De Re,2004	0	29	2	144	2.0%	0.97 [0.05, 20.65]	2004					
Subtotal (95% CI)		75		192	10.1%	0.30 [0.04, 2.47]		3				
Total events	0		5									
Heterogeneity: Chi ² = 0	.81, df = 1	(P = 0.)	.37); 12 = (0%								
Test for overall effect: 2	Z = 1.11 (P	= 0.27)									
Total (95% CI)		281		516	100.0%	1.59 [1.09, 2.32]				•		
Total events	74		83					-	53		25	
Heterogeneity: Chi ² = 9	.00, df = 5	(P = 0	.11); l ² = 4	44%				0.01	0.1	1	10	100
Test for overall effect: 2	Z = 2.39 (P	= 0.02	:)				5		experimenta	n ¹⁹ Second and the second second	25.5	
Test for subaroup differ	ences: No	t applic	able					avours	experimente	1 410013	control	

Figure 3 Meta-analysis forest plot of included studies on the association between HLA-DRB1*12 allele and HCC. Each plot shows the effect size and precision for individual studies and for the combined effect. Filled squares are proportional in size to study weights.


DR1*15


	HCC	;	Contr	ol		Odds Ratio		Oc	ids Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H. Random. 95% CI	Year	M-H. R	andom. 95% Cl
1.1.1 Asians									101
Donaldson,2001	30	84	23	124	20.3%	2.44 [1.29, 4.61]	2001		
Yuan,2005	6	10	6	50	12.0%	11.00 [2.39, 50.59]	2005		
Pan,2009	23	62	9	50	17.8%	2.69 [1.11, 6.52]	2009		
Subtotal (95% CI)		156		224	50.1%	3.22 [1.63, 6.37]			•
Total events	59		38						
Heterogeneity: Tau ² = 0).14; Chi ² =	= 3.25,	df = 2 (P	= 0.20)	; 12 = 38%				
Test for overall effect: Z	z = 3.36 (P	= 0.00	08)						
1.1.2 Others									-
López-Vázquez,2004	13	46	14	48	17.8%	0.96 [0.39, 2.34]	2004	-	
De Re,2004	6	29	21	144	16.6%	1.53 [0.56, 4.20]	2004		
El-Chennawi,2008	5	50	13	50	15.5%	0.32 [0.10, 0.97]	2008		
Subtotal (95% CI)		125		242	49.9%	0.80 [0.34, 1.89]		-	•
Total events	24		48						
Heterogeneity: Tau ² = 0).31; Chi ² =	= 4.37,	df = 2 (P	= 0.11)	; 12 = 54%				
Test for overall effect: Z	z = 0.51 (P	= 0.61)						
Total (95% CI)		281		466	100.0%	1.70 [0.80, 3.59]			•
Total events	83		86						
Heterogeneity: Tau ² = 0).61; Chi ² =	= 18.36	, df = 5 (F	P = 0.00)3); l² = 73	1%	H	1 0,1	1 10 100
Test for overall effect: Z					18 1		0.0		1 10 100 tal Favours control

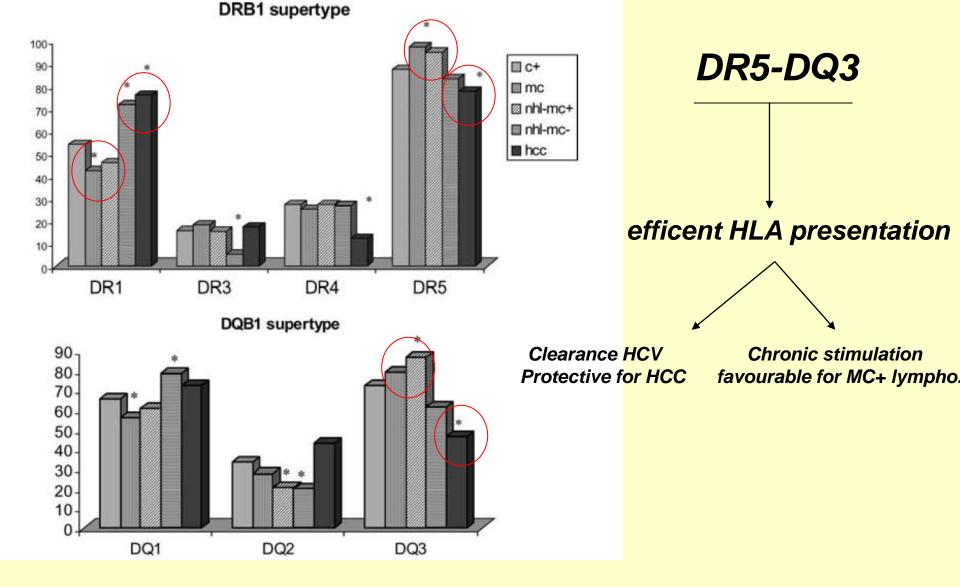

effect size and precision for individual studies and for the combined effect. Filled squares are proportional in size to study weights.

In silico groups

In silico grouped Marsh, 2007

	Bone marrow donors ($N = 4575$)		НС	CV^+ (N = 83)	$HCV^{+}MC^{+}(N = 118)$		
	No.	%	No.	%	No.	%	
DR1	2579	56.37	50	60.24	49	41.53 P = 0.002	
DR1-DR1	650	14.21	16	19.28	11	9.32	
DR1-DR2	895	19.56	20	24.10	25	21.19	
DR1-DR7	920	20.11	18	21.69	13	11.02 P = 0.020	
DR3	710	15.52	21	25.30 P = 0.023	21	17.80	
DR4	1243	27.17	24	28.92	26	22.03	
DR5	3992	87.26	55	66.27 <i>P</i> < 0.001	111	94.07 P = 0.039	
DQ1	2995	65.46	55	66.27	66	55.93 P = 0.040	
DQ2	1530	33.44	33	39.76	33	27.97	
DQ3	3299	72.11	51	61.45 <i>P</i> = 0.0435	96	81.36 P = 0.035	

Table 6 Frequencies of *in silico* clusterization of HLA DRB1 and HLA DQB1 alleles among control groups of patients with HCV⁺ without neoplasia or type II cryoglobulinemia and patients with HCV⁺ and MC⁺ syndrome without lymphoma^a

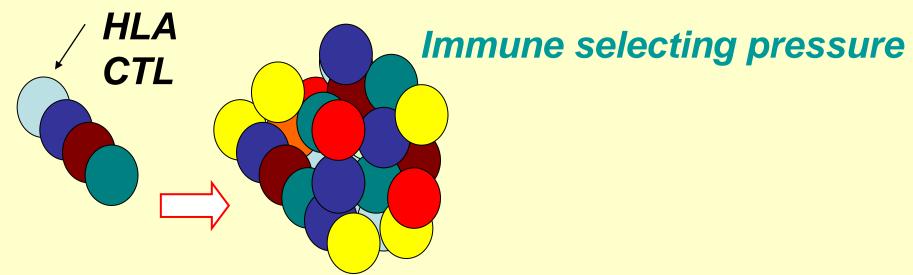

HCV, hepatitis C virus; MC, mixed cryoglobulinemia.

^aMost frequent HLA-DRB1 alleles sharing the amino acid sequence for the following supertypes **DR1**: 0101-11, 1501-11, 1601-08, 0701-07; **DR3**: 0301-25, 0422, 1107; **DR4**: 0401, 0403-48 without the alleles from DR5, 1113, 1117, 1126, 1134, 1142, 1309, 1401-48 without the alleles from DR5, 1001; **DR5**: 0402, 0412, 0415, 0425, 0436, 0437, 0447, 1101-47 without the alleles from DR4, 1201-09, 1301-62; 1403, 1416, 1422, 1425, 1427, 1440, 0801-25; **DR9**: 0901, 0902. DR1 supertype clustering: **DR1-DR1** (0101-11); **DR1-DR2** (1501-11, 1601-08); **DR1-DR7** (0701-07). Most frequent HLA-DQB1 alleles sharing the amino acid sequence for the following supertypes **DQ1**: 0501-03, 0601-21; **DQ2**: 0201-03; **DQ3**: 0301-13, 0401-2. *P*: chi-square test.

Frequencies of in silico clusterizzation of HLA DRB1 and DQB1

DR-DQ	Bone marrow donors N=4575			HCV+ MC+ NHL N=70		HCV+ MC- NHL N= 71			
combination	N.	(%)	P RR	N.	(%)	Р RR (95%CI)	N.	(%)	Р RR (95%CI)
DR1-DQ1	1373	30 %	1	18	25.71%	ns	37	52.11%	<i>p</i> ≤0.001 RR=2.5 (1.574 to 3.962)
DR5-DQ3	2516	55%	1	53	75.71%	p≤0.001 RR=2.5 (1.463 to 4.338)	44	61.97%	ns
DR3-DQ1	338	7.39%	1	3	4.28%	ns	4	5.63%	ns
	Bor	ne marrow o N=4575				HCV+ N=83	HCV- N= 11	+ MC+ 18	
	N.	(%)	P RR	N.	(%)	Р RR (95%CI)	N.	(%)	Р RR (95%CI)
DR1-DQ1	1373	30 %	1	33	39.76%	ns	37	31.36%	ns
DR5-DQ3	2516	55%	1	39	46.99%	ns	87	73.73%	<i>p≤</i> 0.001 RR=2.3 (1.501 to 3.382)
DR3-DQ1	338	7.39%	1	16	19.28%	p≤0.001 RR=2.9 (1.701 to 4.956)	7	5.93%	ns

De Re et al. Tissue Antigens. 2009

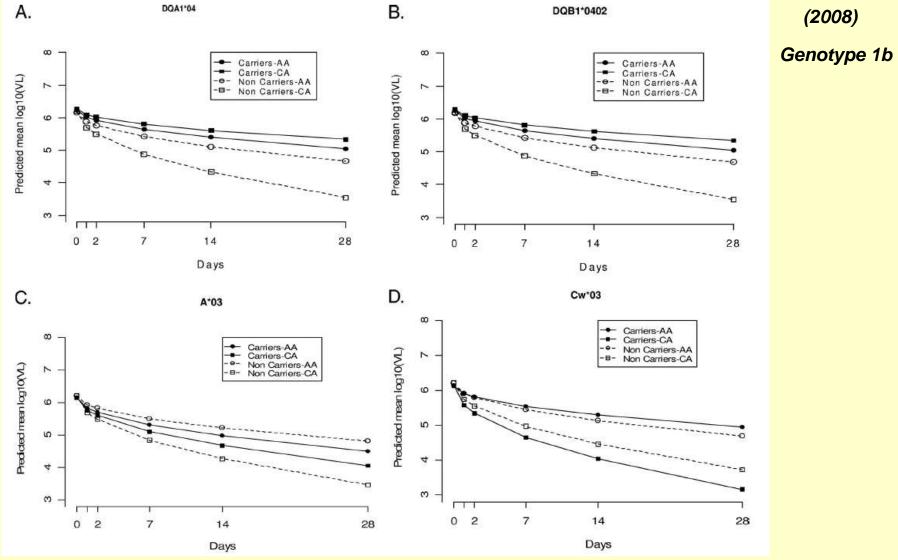


HLA and antiviral response

CD8 Epitope Escape and Reversion in Acute HCV Infection

Joerg Timm,¹ Georg M. Lauer,¹ Daniel G. Kavanagh,¹ Isabelle Sheridan,³

The Journal of Experimental Medicine 2004


HLA stress the genomic variability of HCV

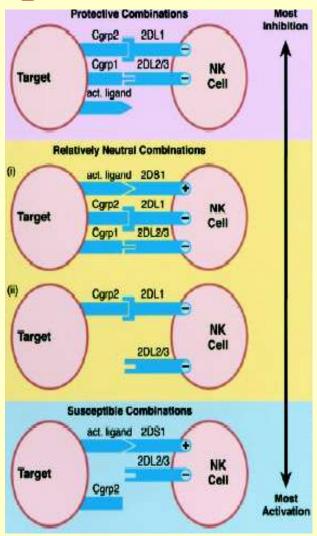
They exmined viral evolution in an *immunodominant* human histocompatibility leukocyte antigen (HLA)-<u>B8</u>–restricted **NS3** epitope in subjects with **acute** HCV infection. --- ex vivo **tetramer** and **interferon** enzyme-linked **immunospot** responses; variant NS3 **sequences.** subjects with **chronic** HCV infection


Interestingly, transmission of an HLA-B8–associated escape mutation to an <u>HLA-B8</u> <u>negative</u> subject resulted in <u>rapid reversion</u> of the mutation.

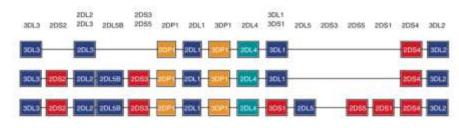
Polymorphism in the Human Major Histocompatibility Complex and Early Viral Decline during Treatment of Chronic Hepatitis C[⊽]‡

Leland J. Yee,^{1,2}* KyungAh Im,^{1,3} Abdus S. Wahed,³ Teodorica Bugawan,⁴ Jia Li,⁴ Shannon L. Rhodes,⁵ Henry Erlich,⁴ Hugo R. Rosen,⁶ T. Jake Liang,⁷ and Huiying Yang⁵§ for the Virahep-C Study[†]

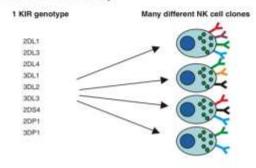
First International Course of Translational Hepatology, Florence, 2011

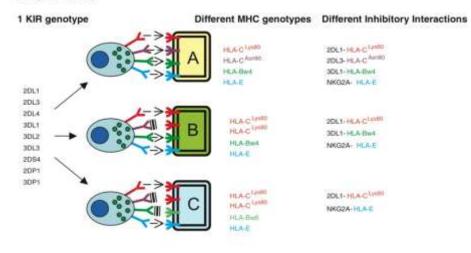

<u>epistatic selection</u>, which involves simultaneous positive selection of combinations of alleles at two or more sites

Single et al. experimentally demonstrated the occurrence of epistatic selection in humans. This occurs between the KIR and their HLA ligands.


Nature Reviews Genetics

This was particularly prominent for the activating KIR gene KIR3DS1 and its putative HLA-Bw4-80I ligand,


KIR MOLEFOLE Jolimorfielie


A. KIR locus diversity

B. NK cell clonal diversity

C. Ligand diversity

Antiviral response

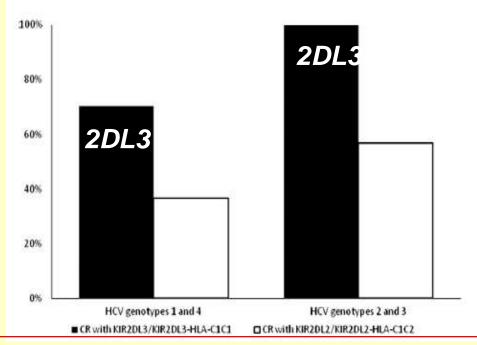
<u>a protective association</u> of the inhibitory receptor <u>KIR2DL3</u> with HLA-CAsn80 (<u>HLA-C1</u>) and its effect on the course of HCV infection. (<u>HLA B*57, Cw*01 and Cw*04</u>) (Khakoo Science 2004; Romero Mol Immunol 2008, KNAPP Hepathology 2010).

The prevalence is increased in individuals who **eliminate HCV spontaneously**, in contrast to those who remain chronically infected. The protective effect was observed only among individuals who carried both homozygous genes and had received a low HCV exposure dose. During therapy with INF- α , there is restoration of suppressed NK activity (*Ahlenstiel Gastroenterology 2009; Kronenberger J Leukoc Biol 2006; Bonavita Int TRissue React 1993*)

HCC suceptibility

The frequency of <u>HLA-Bw4I80</u> ligand and the activating receptor <u>KIR3DS1</u> was increased in HCV healthy carriers compared to patients who had developed **hepatocellular** carcinoma.(*(Lopez-Vasquez J Infect Dis 2005).*

JOURNAL OF VIROLOGY, Jan. 2010, p. 475–481 0022-538X/10/\$12:00 doi:10.1128/JVI.01285-09 Copyright © 2010, American Society for Microbiology. All Rights Reserved. Vol. 84, No. 1


Effect of Killer Immunoglobulin-Like Receptors in the Response to Combined <u>Treatment</u> in Patients with Chronic Hepatitis C Virus Infection[⊽]

J. R. Vidal-Castiñeira,¹ A. López-Vázquez,¹ R. Díaz-Peña,¹ R. Alonso-Arias,¹ J. Martínez-Borra,¹ R. Pérez,² J. Fernández-Suárez,⁴ S. Melón,⁴ J. Prieto,³ L. Rodrigo,² and C. López-Larrea¹⁺

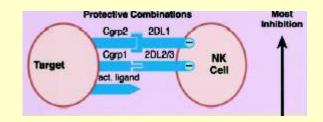

Histocompatibility Unit, Immunology Service, Hospital Universitario Central de Asturias, Oviedo, Spain¹; Gastroenterology Service, Hospital Universitario Central de Asturias, Oviedo, Spain²; Liver Unit and Division of Hepatology and Gene Therapy, Clínica Universitaria de Navarra, University of Navarra, Pamplona, Spain³; and Microbiology Service, Hospital Universitario Central de Asturias, Oviedo, Spain⁴

TABLE 3. Final step of a backward logistic regression analysis of risk factors associated with nonresponse to anti-HCV treatment^a

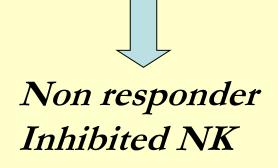
Variable	OR	95% CI	P value
KIR2DL2/KIR2DL2-HLA-C1C2 genotype	4.12	1.68-10.1	< 0.01
HCV genotype 1	3.32	1.49-7.42	< 0.005

A total of <u>186 consecutive</u> patients diagnosed with chronic HCV infection were analyzed. <u>77</u> (NR) patients exhibited HCV RNA levels at 6 months posttreatment. <u>109</u> (SVR) cleared viral RNA.

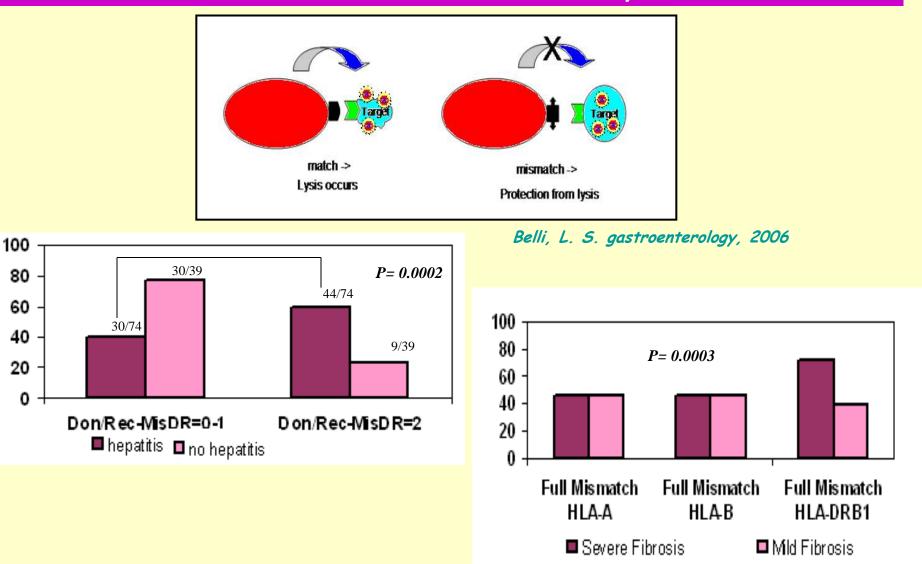
2DL2-C1 >2DL2-C2>2DL3-C1

Viral hepatitis: Human genes that limit infection Frank Grünhage, MD^{a,*}, Jacob Nattermann, Professor^b

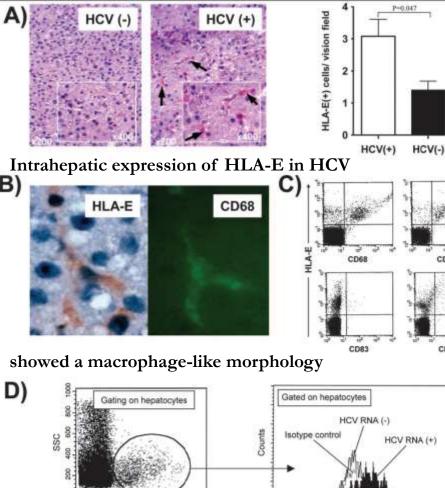
HBV

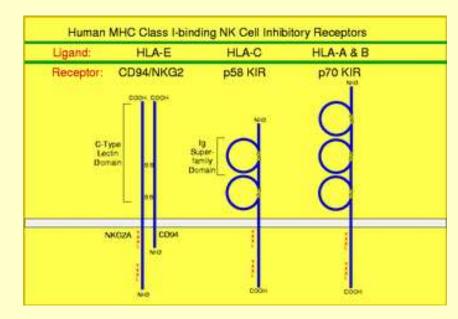

Best Practice & Research Clinical Gastroenterology 24 (2010)

List of genes and genetic variations the have been associated with spontaneous clearance of hepatitis B viral infection.


Gene	SNP	Population	Associated gene/genotype/allele	Association
Interferon- λ				
IFNAR2	F8S	African	S	Associated with spontaneous HBV clearance
IL-10RB	K47E	African	E	Associated with spontaneous HBV clearance
TNF-alpha	-863C>A		CC	Associated with spontaneous HBV clearance
	-308G>A		A	Associated with spontaneous HBV clearance
	Haplotype 1 [-1031T -863C; -857C; -308G; -238G; -163G]		Haplotoype present	Associated with HBV clearance
	Haplotype 2 [-1031C; -863A; -857C; -308G; -238G; -163G]			
IFN-γ	Haplotype [+874A; +2109G]	Asian	Haplotype present	
HLA DRB1*1302			HLA present	Associated with protection against persistent HBV infection
KIR		Asian	KIR2DS2	Associated with HBV susceptibility
		Asian	KIR2DS3	Associated with HBV susceptibility
		Asian	KIR2DS1	Associated with HBV clearance
			KIR3DS	Associated with HBV clearance
		Asian	KIR2DL5	Associated with HBV clearance
SPP1	Haplotype [-1800T; -1627T; +4645C; +5608T; +6139A]	Asian	Haplotype present	Associated with HBV clearance
MCP1	-2518G>A	Asian	A	Controversial, may be associated with clearance
IFNGR	-56C>T		Т	Controversial
IGF2	Haplotype [+6815A; +8173C; +1156C; +1252T; +2482A; +2722T; +820G]		Haplotype present	Associated with clearance of HBV
	Haplotype [+6815T; +8173C; +1156T; +1252T; +2482A; +2722C; +820A]		Haplotype present	Associated with persistence of HBV

HLA/KIR in course


a lower rate of functional KIR2DL2/C1 combination was found in HCC to CH, P=0.05.


HLA-DRB1 Donors-Recipient Mismatch affects the Oucome of HCV Disease Recurrence After Liver Transplantation

Others than classical KIRS

The HLA-A2 Restricted T Cell Epitope HCV Core_{35–44} Stabilizes HLA-E Expression and Inhibits Cytolysis Mediated by Natural Killer Cells

First International Course of Translational Hepatology, Florence, 2011

CD31

CD14

GRAZIE PER L'ATTENZIONE

<u>Farmacologia Clinica e Sperimentale</u> <u>Aviano (PN)</u>

V De Re

L Caggiari MA De Zorzi

Membri associazione Italiana crioglobulinemici (ALCRI)

- D. Sansonno, F. dammacco, V. Racanelli (Bari)
- S. De Vita (Udine)
- AL Zignego (Firenze)
- C. Ferri (Pisa)
- C. Mazzaro (Pordenone)
- M. Galli, G Monti (Milano, Saronno)
- P. Piotelli (Milano)
- A. Gabrielli (Ancona)
- M. Libra (Catania)
- M. Lenzi (Bologna)
- A. Carbone (Aviano)
- M. Crovatto (pordenone)
- R. Talamini (Aviano)