Molecular Biology of Hepatocellular Carcinoma and Targeted Therapies

First International Course on Translational Hepatology: Focus on HCV Disease March 9-11, 2011

Melanie B. Thomas, M.D. Associate Director of Clinical Investigations Grace E. DeWolff Chair in Medical Oncology Associate Professor Hollings Cancer Center Charleston, SC

MEDICAL UNIVERSITY

of SOUTH CAROLINA

HOLLINGS CANCER CENTER

Hepatocellular Carcinoma (HCC) is a Challenging Cancer

•HCC is a complex malignancy:

- Multiple etiologies:
 - •HBV, HCV, alcohol, fatty liver,
 - •hemochromatosis, alpha-1 anti-trypsin deficiency, other metabolic diseases,
 - •exogenous hormones, autoimmune hepatitis, aflatoxin-B exposure.
- Inflammatory environment of cirrhotic liver contributes to carcinogenesis.
- •HCC is predicted to increase 4-fold in the U.S.

•Why is HCC Incidence Increasing?

- Rising incidence of cirrhosis from multiple causes.
- Large pool of >4,000,000 HCV+ individuals who acquired HCV prior to identification & screening, plus 38,000 new cases annually.
- Increasing prevalence of obesity, fatty liver (non-alcoholic fatty liver disease, NAFLD).
- Improved survival for patients with cirrhosis.

HCC Epidemiology

Obesity and Liver Cancer

Calle, et al, NEUM 2003

HCC Epidemiology Mortality from Cancer in Obese US Men (n=900,053)

Calle EE, & et al, N Engl J Med 2003

HCC is unique - one patient, two diseases:

Consequences of cirrhosis:

Portal hypertension leads to splenomegaly, varices.

Main portal vein thrombus

HCC is unique - one patient, two diseases:

HCC has multiple underlying etiologies > yields a molecularly complex tumor:

HBV-related HCC: •<50% develop in cirrhosis. •Typically form large dominant masses with tumor capsule. •Young patients, normal hepatic function

HCV-related HCC.
90% in cirrhosis.
Diffuse, infiltrative, multifocal HCC.

•Older patients, mild-severe

First International Course of Translational Hepatology, Florence, 2011

- Cirrhosis = "field defect" entire liver is a premalignant lesion
- High recurrence rates after resection, locoregional therapy
- Cirrhosis > portal HTN > thrombocytopenia > impaired synthetic function >GIB risk.
- Co-morbidities of cirrhosis complicate clinical trial design for new chemotherapeutic agents, patient recruitment.

Current HCC Treatment Algorithm

Systemic chemotherapy for patients with advanced HCC

- HCC is a highly chemotherapyresistant tumor.
- Hepatocytes and HCC cells produce over express multi-drug resistance (mdr1) gene > produce cellular efflux pumps.
- Numerous classes of conventional cytotoxic drugs have been studied in HCC:
 - Anthracyclines
 - Taxanes
 - Anti-metabolites
 - interferons
 - cell cycle inhibitors

Despite 30 years of clinical trials of numerous chemotherapy agents, no drug or combination showed patient benefit.

Negative Randomized Chemotherapy Clinical Trials in HCC

Study	Regimen	Phase	Ν	RR%	MS (mos)
Yeo JNCI 2005	*PIAF vs adriamycin	ш	94/94	20.9 vs 10.5	8.6 vs 6.83
Posey et al ASCO 2005	TI38067 vs adriamycin	11/111	169/170	NA	5.7 vs 5.6
Gish et al JCO 2007	Nolatrexed vs doxorubucin	=	37/17	0	4.9 vs 3.7
Mok et al JCO	Nolatrexed vs doxorubicin	=	444	1.4 vs 4.0	5.5 vs 8 (p=.0068)
Barbare	Tamoxifen vs BSC	=	210/210	NA	4.8 vs 4.0
Dollinger et al ASCO 2008	Thymosin vs placebo	=	65/68	NA	5.0 vs 5.2
SUN 1170	Sunitinib vs sorafenib	III		NA	Trial closed at 1st interim analysis

TARGETED THERAPY FOR HCC The Dawn of a New Era

Recent Trials of Molecular-Targeted Agents in HCC

Regimen	Phase	Sample size	RR%	PFS/TTP	Median survival (months)	Reference
Sorafenib	2	137	2.2		9.3	Abou Alfa et al JCO 2006
Sorafenib vs placebo ("SHARP" trial)	3	602	2.3	5.5 (T)	10.7 (vs 7.9 placebo, p=0.00058)	Llovet et al NEJM 2008
Sorafenib vs placebo	3	150/76		TTP 2.8 vs 1.4 PFS 2.8 vs 1.4	6.2 (vs 4.1 placebo)	Cheng et al Lancet Oncology 2009
Sorafenib + doxorubicin vs doxorubicin + placebo	RII	47/49	4/2	8.6/4.8 (T)	13.7/6.5	Abou Alfa et al
Bevacizumab	2	46	13	6.9 (P)	12.4	Seigel et al JCO 2008
Sirolimus	2	21	4.7		6.5	Rizell et al 2008
Erlotinib	2	38	9	3.2 (P)	13	Philip et al JCO 2005
Erlotinib	2	40	0	6.3 (P)	10.75	Thomas et al Cancer 2007
Cetuximab	2	32	0	1.4	9.6	Zhu et al Cancer 2007
Gefitinib	2	31	3	2.8 (P)	6.5	O'Dwyer et al ASCO 2006
Sunitinb	2	34	2.9	3.9	9.8	Zhu et al JCO 2009
Sunitinb	2	37	2.7	5.2	11.2	Faivre et al ASCO 2007
Brivinib	2	55		2.8 (T)	10	Raoul et al 2009
Bevacizumab + erlotonib	2	40	25	9.0 (T)	15.65	Thomas et al JCO 2009
Bevacizumab + erlotonib	2	59	27.5		No prior Tx: 15.0 (n=44) Prior sorafenib: 8.2 (n=7) Prior other Tx" 17.9 (n=8)	Kaseb, Garrett-Meyer, Thomas et al 2011 (in press)

First International Course of Translational Hepatology, Florence, 2011

Linking Targeted Agents* to Molecular Targets in Cancer: *What is the Evidence?*

Agent	Target	Tumor type	Effect	Target Validation
Trastuzumab Lapatinib	HER2 receptor HER1-2 heterodimers	Her2-overexpressing breast cancer	Improves <mark>survival</mark> Decreases recurrence as adjuvant therapy	yes
Bevacizumab	mAB binds serum VEGF A ligand	Metastatic colorectal, lung, breast cancers	Improves <mark>survival</mark> , TTP in metastatic colon, lung, breast cancers	no
Cetuximab (EGFR mAb)	Extra-cellular domain EGFR	Irinotecan-refractory colorectal cancer	Improves survival, TTP in metastatic colon	Kras mutants do not benefit from EGFR mAb
Gefitinib Erlotinib (EGFR TKI)	Intracellular phosphorylation site	non-small cell lung pancreatic	Improves <mark>survival</mark> NSCLA, 2nd line Improves PFS in pancreatic ca by <2 wks	EGFR mutations in minority of patients predict benefit
Sorafenib	Raf-ras pathway VEGF	RCC, HCC	Improves survival, TTP	no
Sunitinib	Raf-ras pathway VEGF	GIST RCC	Improves survival, TTP	no
Bortezomib	mTOR	Myeloma	Improves survival decreases transfusions	no
Imatinib	C-kit	GIST CML	Improves RR, survival Decreases recurrence	yes

Evidence for the Critical Role of Angiogenesis in HCC:

- HCC are highly vascularized, propensity for vascular invasion
- Growth factors EGF, TGFβ, HGF, VEGF all involved in normal liver regeneration
- Increased growth factors expression seen in chronic hepatitis, cirrhosis, dysplastic nodules, HCC cell lines and tissue
- VEGF over-expression and increased microvessel density (MVD) common in HCC
- VEGF gene is transcribed, expressed and VEGF secreted by HCC
- High VEGF expression in HCC measured by immunohistochemistry (IHC) tissue significantly associated with:
 - increased arterialization
 - poorer tumor differentiation
 - high proliferative index
 - poor tumor encapsulation

Angiogenesis in HCC Progression

Angiogenic factors implicated in HCC include

- VEGFs (vascular endothelial growth factors)
- PDGFs (platelet-derived growth factors)
- PIGF (placental growth factor)
- TGF-α, TGF-β (transforming growth factors-alpha, -beta)
- bFGF (basic fibroblast growth factor)
- EGF (epidermal growth factor)
- HGF (hepatocyte growth factor)
- ANGs (angiopoietins)
- IL-4, IL-8 (interleukins-4, -8)

1. Semela D, Dufour J-F. J Hepatol. 2004;41:864-880. 2. Folkman J. Curr Mol Med. 2003;3:643-651.

HCC Pathogenesis

Angiogenic Signaling in Cancer

Factor	Role in hepatocellular carcinoma
HGF (hepatocyte growth factor)	Known pro-angiogenic growth factor, acts via c-met. Common in hepatocyte regeneration; predicts poor prognosis.
EGF (epidermal growth factor receptor)	Known mitogen in multiple tumor types; Increases HCC proliferations in multiple cell line. EGF over-expression common in chronic hepatitis, cirrhosis and HCC (40-80%).
FGF (fibroblast growth factor receptor)	Upregulates DNA synthesis. Mitogenic for hepatocytes, potent inducer of angiogenesis. Interacts with EGFR; Frequent in hepatitis, cirrhosis, HCC; not in normal liver
IGF (insulin-like growth factor) family	Common in fetal liver; declines after birth; highly prevalent in HCC IGF pro-carcinogenic in many tumor types. May be link between fatty liver and HCC. Preclinical data shows anti-IGF-1 tyrosine kinase inhibitors induce growth inhibition, apoptosis, cell cycle arrest in HCC cell lines.
PDGF (platelet- derived growth factor)	An angiogenic molecule promotes endothelial cell migration. May be potent stimulator of angiogenesis in HCC.

TARGETED THERAPY FOR HCC The Dawn of a New Era

Recent Trials of Molecular-Targeted Agents in HCC

Regimen	Phase	Sample size	RR%	PFS, TTP	Median survival (months)	Reference
Sorafenib	2	137	2.2		9.3	Abou Alfa et al JCO 2006
Sorafenib vs placebo	3	602	2.3	5.5 (T)	10.7 (vs 7.9 placebo, p=0.00058)	Llovet et al NEJM 2008
Sorafenib vs placebo	3	150/76		TTP 2.8 vs 1.4 PFS 2.8 vs 1.4	6.2 (vs 4.1 placebo)	Cheng et al Lancet Oncology 2009
Sorafenib + doxorubicin vs doxorubicin + placebo	RII	47/49	4/2	8.6/4.8 (T)	13.7/6.5	Abou Alfa et al
Bevacizumab	2	46	13	6.9 (P)	12.4	Seigel et al JCO 2008
Sirolimus	2	21	4.7		6.5	Rizell et al 2008
Erlotinib	2	38	9	3.2 (P)	13	Philip et al JCO 2005
Erlotinib	2	40	0	6.3 (P)	10.75	Thomas et al Cancer 2007
Cetuximab	2	32	0	1.4	9.6	Zhu et al Cancer 2007
Gefitinib	2	31	3	2.8 (P)	6.5	O'Dwyer et al ASCO 2006
Sunitinb	2	34	2.9	3.9	9.8	Zhu et al JCO 2009
Sunitinb	2	37	2.7	5.2	11.2	Faivre et al ASCO 2007
Brivinib	2	55		2.8 (T)	10	Raoul et al 2009
Bevacizumab + erlotonib	2	40	25	9.0 (T)	15.65	Thomas et al JCO 2009
Bevacizumab + erlotonib	2	59	27.5		No prior Tx: 15.0 (n=44) Prior sorafenib: 8.2 (n=7) Prior other Tx" 17.9 (n=8)	Kaseb, Garrett-Meyer, Thomas et al 2011 (in press)

Phase II trial of bevacizumab and erlotinib in HCC

Trial based on:

- Importance of VEGF and EGF in HCC carcinogenesis.
- Improved survival of bevacizumab, erlotinib in multiple other tumor types.

Single-arm, open label trial of B+E in unresectable HCC

- Bevacizumab (humanized mAb against VEGF-A ligand)
- Erlotonib (oral tyrosine kinase inhibitor TKI binds EGF)

Primary Endpoint progression-free survival at 16 weeks therapy >50%

- Based on "historical controls" from small Phase II trials (pre-SHARP trial results)
- Goal: identify meaningful "biologic signal" of drug activity
- Evaluate safety of dual targeted agents in HCC.

• Eligibility criteria:

- One prior systemic therapy allowed; unlimited regional treatments
- Performance Status 0-2
- Childs-Pugh A, B; bilirubin <2, transaminases ≤ 5 XULN, platelets ≥ 60,000
- Portal vein thrombus allowed
- No fibrolamellar HCC
- Prior variceal bleeding allowed if >3 months.

Summary of Survival Data: ITT Analysis

Prior treatment history	PFS in months Median (95% CI)	OS in months Median (95% CI)
No prior treatment (n=44)	8.8 (5.5, 10.1)	15.6 (9.5, 19.5)
Prior treatment with sorafenib (n=8)	7.9 (4.2, 13.3)	13.3 (4.2, 22.3)
Prior treatment with other systemic therapy (n=6)	6.6 (1.9, 11.0)	14.4 (1.9, Inf*)

*Upper limit is infinite because of the small number of patients with prior treatment with regimens not including sorafenib

Radiographic evidence of tumor responses in HCC patients treated with **bevacizumab** and **erlotinib**

Computed tomography of the abdomen of a 76 year old man with multi-focal hypervascular HCC in right lobe liver,baseline.

Decreased tumor vascularity, partial tumorresponse after 6 months bevcizumab and erlotinib

62 yo man with multifocal recurrent HCC, PVT 4 mos after extended rt hepatectomy Baseline alpha-fetoprotein (AFP) 214,046

First International Course of Translational Hepatology, Florence, 2011

29 yo man with cirrhosis, metabolic syndrome, massive HCC. Baseline, AFP 70,000

Restaging CT after 16 weeks bevacizumab +erlotinib decreased tumor vascularity, AFP 30,000

First International Course of Translational Hepatology, Florence, 2011

50 yo man with recurrent HCC in right portal vein (tumor thrombus) and adjacent liver. Tumor effacing IVC. Baseline AFP 2,073

63 year old woman with hypervascular HCC, right lobe. Significant portal HTN precluded resection.

Decreased tumor vascularity after 8, 16 weeks treatment with B+E.

Radiographic Evidence of Tumor Response to B+E in Second-Line Setting After Progression on Sorafenib

48 yo woman presented with ruptured 9 cm HCC 8/05, underwent primary resection. Developed recurrent multiple abdominal implants 3/06; failed 5FU/IFN

Patient treated with B+E off-protocol; significant radiographic response after 6 mos. 2/07 underwent resection of prior incision, port sites, residual implants. No tumor detected in any specimen=pCR. Free of disease June 2008

homas et al Journal of Surgical Oncology Oct 2007

An exciting time in hepatocellular carcinoma...

 SHARP trial established sorafenib as standard of care systemic therapy for advanced disease patients

- Explosion of interest and clinical research in HCC-
 - 156 actively recruiting, phase II or III interventional trials in HCC listed on <u>www.clinicaltrials.gov</u>
 - Broad international recruitment
 - •Multiple trials for each stage of disease
- Numerous targeted agents are now in clinical trials
-However are the "right" agents being studied?

Current Randomized Trials in HCC

Regimen	Study Phase	Rationale
Sorafenib vs Sunitinib	III	OS Sorafenib 10.7 months Ph III OS Sunitinib 8-9.8 months in 2 Ph II Closed at 1st interim analysis for futility
Sorafenib vs Erlotinib + Sorafenib	Ш	OS Sorafenib 10.7 months Ph III
Sorafenib vs Bevacizumab+Erlotinib	Randomiz ed Ph II	OS Sorafenib 10.7 months Ph III TTP 5.5. vs 2.8 months Response rate 28% OS B+E 15.6 months (n=58) TTP 8.8 months
Sorafenib vs Brivinib	III	OS Sorafenib 10.7 months Ph III OS 10 months Ph II
Sorafenib vs doxorubicin+sorafenib	III	OS Sorafenib 10.7 mos Ph III OS Dox+S 13.8 mos Randomized Ph II
Sorafenib vs ABT869	RII	OS Sorafenib 10.7 mos Ph III OS 9.7 months Ph II

Molecular Biology of Hepatocellular Carcinoma and Targeted Therapies

Conclusions:

HCC is a highly molecularly complex tumor...

- ...Yet a single agent sorafenib, that targets ras-raf-signaling pathway is the first chemotherapy agent to improve patient survival.
- The prominent role of growth factor dysregulation in HCC provides opportunities to develop potent, combination targeted therapy strategies.
- It is essential to develop molecular characterization systems of all stages and etiologies of HCC.

Nolto grazie Please come visit Charleston, count

