Molecular Biology of Hepatocellular Carcinoma and Targeted Therapies

First International Course on Translational Hepatology: Focus on HCV Disease
March 9-11, 2011

Melanie B. Thomas, M.D.
Associate Director of Clinical Investigations
Grace E. DeWolff Chair in Medical Oncology
Associate Professor
Hollings Cancer Center Charleston, SC
Hepatocellular Carcinoma (HCC) is a Challenging Cancer

• HCC is a complex malignancy:
 • Multiple etiologies:
 • HBV, HCV, alcohol, fatty liver,
 • hemochromatosis, alpha-1 anti-trypsin deficiency, other metabolic diseases,
 • exogenous hormones, autoimmune hepatitis, aflatoxin-B exposure.
 • Inflammatory environment of cirrhotic liver contributes to carcinogenesis.

• HCC is predicted to increase 4-fold in the U.S.

• Why is HCC Incidence Increasing?
 • Rising incidence of cirrhosis from multiple causes.
 • Large pool of >4,000,000 HCV+ individuals who acquired HCV prior to identification & screening, plus 38,000 new cases annually.
 • Increasing prevalence of obesity, fatty liver (non-alcoholic fatty liver disease, NAFLD).
 • Improved survival for patients with cirrhosis.
HCC Epidemiology

Obesity and Liver Cancer

BMI

- 35 to 39.9
- 30 to 34.5
- 20 to 29.9
- 18.5 to 25

Death Rate per 100,000

- Women
- Men

Caffo, et al, NEJM 2013
HCC Epidemiology

Mortality from Cancer in Obese US Men (n=900,053)

Type of Cancer (Highest BMI Category)

- Prostate (≥35) 1.34
- Non-Hodgkin’s Lymphoma (≥35) 1.49
- All Cancers (≥40) 1.52
- All Other Cancers (≥30) 1.68*
- Kidney (≥35) 1.70
- Multiple Myeloma (≥35) 1.71
- Gall Bladder (≥30) 1.76
- Colon and Rectum (≥35) 1.84
- Esophagus (≥30) 1.91*
- Stomach (≥35) 1.94
- Pancreas (≥35) 2.61*
- Liver (≥35) 4.52

Relative Risk of Death (95% Confidence Interval)

First International Course of Translational Hepatology, Florence, 2011
HCC is unique - one patient, two diseases:

Consequences of cirrhosis:

- Ascites
- Diffuse nodular, fatty liver
- Main portal vein thrombus

Portal hypertension leads to splenomegaly, varices.
HCC is unique - one patient, two diseases:

- HCC has multiple underlying etiologies > yields a molecularly complex tumor:
 - Cirrhosis = “field defect” - entire liver is a premalignant lesion
 - High recurrence rates after resection, locoregional therapy
 - Cirrhosis > portal HTN > thrombocytopenia > impaired synthetic function > GI bleeder risk.
 - Co-morbidities of cirrhosis complicate clinical trial design for new chemotherapeutic agents, patient recruitment.

HBV-related HCC:
- <50% develop in cirrhosis.
- Typically form large dominant masses with tumor capsule.
- Young patients, normal hepatic function.

HCV-related HCC:
- >90% in cirrhosis.
- Diffuse, infiltrative, multifocal HCC.
- Older patients, mild-severe hepatic dysfunction.
Liver Transplantation

- Current 5 year survival 65-75% for patients transplanted within Milan Criteria.
- No extrahepatic disease, no gross vascular invasion, 1 tumor < 5 cm, <3 tumors.

Hepatic resection

- Few patients eligible due to cirrhosis; contraindicated in portal HTN.
- Recurrence rate 50% at 18 months.

Regional therapy - field is rapidly evolving

- Trans-arterial selective delivery of embolic material +/-:
 - cytotoxic agent, drug-eluting beads, yttrium90-embedded microspheres.
- Level 1 evidence of benefit only for solitary tumors < 8 cm, normal bilirubin.
- Contraindicated when bilirubin >3, main PVT.

- **Advanced HCC >75% of patients:**
 - Median survival 6-8 months
 - Sorafenib improves median survival from 7.9 to 10.7 months, but with chronic side effects.
Systemic chemotherapy for patients with advanced HCC

- HCC is a highly chemotherapy-resistant tumor.
- Hepatocytes and HCC cells produce over express multi-drug resistance (mdr1) gene > produce cellular efflux pumps.
- Numerous classes of conventional cytotoxic drugs have been studied in HCC:
 - Anthracyclines
 - Taxanes
 - Anti-metabolites
 - Interferons
 - Cell cycle inhibitors

Despite 30 years of clinical trials of numerous chemotherapy agents, no drug or combination showed patient benefit.
Negative Randomized Chemotherapy Clinical Trials in HCC

<table>
<thead>
<tr>
<th>Study</th>
<th>Regimen</th>
<th>Phase</th>
<th>N</th>
<th>RR%</th>
<th>MS (mos)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yeo JNCI 2005</td>
<td>*PIAF vs adriamycin</td>
<td>III</td>
<td>94/94</td>
<td>20.9 vs 10.5</td>
<td>8.6 vs 6.83</td>
</tr>
<tr>
<td>Posey et al ASCO 2005</td>
<td>T13067 vs adriamycin</td>
<td>II/III</td>
<td>169/170</td>
<td>NA</td>
<td>5.7 vs 5.6</td>
</tr>
<tr>
<td>Gish et al JCO 2007</td>
<td>Nolatrexed vs doxorubicin</td>
<td>II</td>
<td>37/17</td>
<td>0</td>
<td>4.9 vs 3.7</td>
</tr>
<tr>
<td>Mok et al JCO</td>
<td>Nolatrexed vs doxorubicin</td>
<td>III</td>
<td>444</td>
<td>1.4 vs 4.0</td>
<td>5.5 vs 8 (p=.0068)</td>
</tr>
<tr>
<td>Barbare</td>
<td>Tamoxifen vs BSC</td>
<td>II</td>
<td>210/210</td>
<td>NA</td>
<td>4.8 vs 4.0</td>
</tr>
<tr>
<td>Dollinger et al ASCO 2008</td>
<td>Thymosin vs placebo</td>
<td>III</td>
<td>65/68</td>
<td>NA</td>
<td>5.0 vs 5.2</td>
</tr>
<tr>
<td>SUN 1170</td>
<td>Sunitinib vs sorafenib</td>
<td>III</td>
<td>NA</td>
<td></td>
<td>Trial closed at 1st interim analysis</td>
</tr>
</tbody>
</table>
TARGETED THERAPY FOR HCC
The Dawn of a New Era

Cetuximab
Bevacizumab

Gefitinib
Erilotinib
AZD2171
AZD6474
Sunitinib
Lapatinib

Sorafenib

Approved in 2007 by FDA, EMEA based on prolonged survival

First International Course of Translational Hepatology, Florence, 2011
<table>
<thead>
<tr>
<th>Regimen</th>
<th>Phase</th>
<th>Sample size</th>
<th>RR%</th>
<th>PFS/TTP</th>
<th>Median survival (months)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sorafenib</td>
<td>2</td>
<td>137</td>
<td>2.2</td>
<td></td>
<td>9.3</td>
<td>Abou Alfa et al JCO 2006</td>
</tr>
<tr>
<td>Sorafenib vs placebo (“SHARP” trial)</td>
<td>3</td>
<td>602</td>
<td>2.3</td>
<td>5.5 (T)</td>
<td>10.7 (vs 7.9 placebo, p=0.00058)</td>
<td>Llovet et al NEJM 2008</td>
</tr>
<tr>
<td>Sorafenib vs placebo</td>
<td>3</td>
<td>150/76</td>
<td></td>
<td>TTP 2.8 vs 1.4 PFS 2.8 vs 1.4</td>
<td>6.2 (vs 4.1 placebo)</td>
<td>Cheng et al Lancet Oncology 2009</td>
</tr>
<tr>
<td>Sorafenib + doxorubicin vs doxorubicin placebo</td>
<td>RII</td>
<td>47/49</td>
<td>4/2</td>
<td>8.6/4.8 (T)</td>
<td>13.7/6.5</td>
<td>Abou Alfa et al</td>
</tr>
<tr>
<td>Bevacizumab</td>
<td>2</td>
<td>46</td>
<td>13</td>
<td>6.9 (P)</td>
<td>12.4</td>
<td>Seigel et al JCO 2008</td>
</tr>
<tr>
<td>Sirolimus</td>
<td>2</td>
<td>21</td>
<td>4.7</td>
<td></td>
<td>6.5</td>
<td>Rizell et al 2008</td>
</tr>
<tr>
<td>Erlotinib</td>
<td>2</td>
<td>38</td>
<td>9</td>
<td>3.2 (P)</td>
<td>13</td>
<td>Philip et al JCO 2005</td>
</tr>
<tr>
<td>Erlotinib vs placebo</td>
<td>2</td>
<td>40</td>
<td>0</td>
<td>6.3 (P)</td>
<td>10.75</td>
<td>Thomas et al Cancer 2007</td>
</tr>
<tr>
<td>Cetuximab</td>
<td>2</td>
<td>32</td>
<td>0</td>
<td>1.4</td>
<td>9.6</td>
<td>Zhu et al Cancer 2007</td>
</tr>
<tr>
<td>Gefitinib</td>
<td>2</td>
<td>31</td>
<td>3</td>
<td>2.8 (P)</td>
<td>6.5</td>
<td>O’Dwyer et al ASCO 2006</td>
</tr>
<tr>
<td>Sunitinb</td>
<td>2</td>
<td>34</td>
<td>2.9</td>
<td>3.9</td>
<td>9.8</td>
<td>Zhu et al JCO 2009</td>
</tr>
<tr>
<td>Sunitinb vs placebo</td>
<td>2</td>
<td>37</td>
<td>2.7</td>
<td>5.2</td>
<td>11.2</td>
<td>Faivre et al ASCO 2007</td>
</tr>
<tr>
<td>Bevacizumab + erlotonib</td>
<td>2</td>
<td>55</td>
<td>2.8 (T)</td>
<td></td>
<td>10</td>
<td>Raoul et al 2009</td>
</tr>
<tr>
<td>Bevacizumab + erlotonib</td>
<td>2</td>
<td>40</td>
<td>25</td>
<td>9.0 (T)</td>
<td>15.65</td>
<td>Thomas et al JCO 2009</td>
</tr>
<tr>
<td>Bevacizumab + erlotonib</td>
<td>2</td>
<td>59</td>
<td>27.5</td>
<td></td>
<td></td>
<td>Kaseb, Garrett-Meyer, Thomas et al 2011 (in press)</td>
</tr>
</tbody>
</table>

Recent Trials of Molecular-Targeted Agents in HCC

First International Course of Translational Hepatology, Florence, 2011
<table>
<thead>
<tr>
<th>Agent</th>
<th>Target</th>
<th>Tumor type</th>
<th>Effect</th>
<th>Target Validation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trastuzumab</td>
<td>HER2 receptor, HER1-2 heterodimers</td>
<td>Her2-overexpressing breast cancer</td>
<td>Improves survival, Decreases recurrence as adjuvant therapy</td>
<td>yes</td>
</tr>
<tr>
<td>Lapatinib</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bevacizumab</td>
<td>mAB binds serum VEGF A ligand</td>
<td>Metastatic colorectal, lung, breast cancers</td>
<td>Improves survival, TTP in metastatic colon, lung, breast cancers</td>
<td>no</td>
</tr>
<tr>
<td>Cetuximab</td>
<td>Extra-cellular domain EGFR</td>
<td>Irinotecan-refractory colorectal cancer</td>
<td>Improves survival, TTP in metastatic colon</td>
<td>Kras mutants do not benefit from EGFR mAb</td>
</tr>
<tr>
<td>Gefitinib</td>
<td>Intracellular phosphorylation site</td>
<td>non-small cell lung pancreatic</td>
<td>Improves survival, NSCLLA, 2nd line</td>
<td>EGFR mutations in minority of patients predict benefit</td>
</tr>
<tr>
<td>Erlotinib</td>
<td></td>
<td></td>
<td>Improves PFS in pancreatic ca by <2 wks</td>
<td></td>
</tr>
<tr>
<td>Sorafenib</td>
<td>Raf-ras pathway VEGF</td>
<td>RCC, HCC</td>
<td>Improves survival, TTP</td>
<td>no</td>
</tr>
<tr>
<td>Sunitinib</td>
<td>Raf-ras pathway VEGF</td>
<td>GIST, RCC</td>
<td>Improves survival, TTP</td>
<td>no</td>
</tr>
<tr>
<td>Bortezomib</td>
<td>mTOR</td>
<td>Myeloma</td>
<td>Improves survival, decreases transfusions</td>
<td>no</td>
</tr>
<tr>
<td>Imatinib</td>
<td>C-kit</td>
<td>GIST, CML</td>
<td>Improves RR, survival, Decreases recurrence</td>
<td>yes</td>
</tr>
</tbody>
</table>
Evidence for the Critical Role of Angiogenesis in HCC:

- HCC are highly vascularized, propensity for vascular invasion
- Growth factors EGF, TGFβ, HGF, VEGF all involved in normal liver regeneration
- Increased growth factors expression seen in chronic hepatitis, cirrhosis, dysplastic nodules, HCC cell lines and tissue
- VEGF over-expression and increased microvessel density (MVD) common in HCC
- VEGF gene is transcribed, expressed and VEGF secreted by HCC
- High VEGF expression in HCC measured by immunohistochemistry (IHC) tissue significantly associated with:
 - increased arterialization
 - poorer tumor differentiation
 - high proliferative index
 - poor tumor encapsulation
Angiogenesis in HCC Progression

- Angiogenic factors implicated in HCC include
 - VEGFs (vascular endothelial growth factors)
 - PDGFs (platelet-derived growth factors)
 - PIGF (placental growth factor)
 - TGF-α, TGF-β (transforming growth factors-alpha, -beta)
 - bFGF (basic fibroblast growth factor)
 - EGF (epidermal growth factor)
 - HGF (hepatocyte growth factor)
 - ANGs (angiopoietins)
 - IL-4, IL-8 (interleukins-4, -8)

HCC Pathogenesis

Angiogenic Signaling in Cancer

Autocrine stimulation

Ras
PI3-K
STATs

Proliferation, metastasis

HIF

Tumor cell

Endothelial cell

Ras
PI3-K
STATs

Proliferation and migration

IGF
HGF
PDGF
VEGF

FGF
PIGF
Ang-2
PDGF
VEGF

Pericyte

VEGF
<table>
<thead>
<tr>
<th>Factor</th>
<th>Role in hepatocellular carcinoma</th>
</tr>
</thead>
<tbody>
<tr>
<td>HGF (hepatocyte growth factor)</td>
<td>Known pro-angiogenic growth factor, acts via c-met. Common in hepatocyte regeneration; predicts poor prognosis.</td>
</tr>
<tr>
<td>EGF (epidermal growth factor receptor)</td>
<td>Known mitogen in multiple tumor types; Increases HCC proliferations in multiple cell line. EGF over-expression common in chronic hepatitis, cirrhosis and HCC (40-80%).</td>
</tr>
<tr>
<td>FGF (fibroblast growth factor receptor)</td>
<td>Upregulates DNA synthesis. Mitogenic for hepatocytes, potent inducer of angiogenesis. Interacts with EGFR; Frequent in hepatitis, cirrhosis, HCC; not in normal liver</td>
</tr>
<tr>
<td>IGF (insulin-like growth factor family)</td>
<td>Common in fetal liver; declines after birth; highly prevalent in HCC IGF pro-carcinogenic in many tumor types. May be link between fatty liver and HCC. Preclinical data shows anti-IGF-1 tyrosine kinase inhibitors induce growth inhibition, apoptosis, cell cycle arrest in HCC cell lines.</td>
</tr>
<tr>
<td>PDGF (platelet-derived growth factor)</td>
<td>An angiogenic molecule promotes endothelial cell migration. May be potent stimulator of angiogenesis in HCC.</td>
</tr>
</tbody>
</table>
mAb to extracellular receptor domaine

Cetuximab
Bevacizumab

Gefitinib
Erlotinib
AZD2171
AZD6474
Sunitinib
Lapatinib

GRB
SOS
Prenylated Ras

Raf
P

MEK 1/2
P

MAPK
P

Cell growth

Receptor Tyrosine Kinase

Farnesyl Transferase

Ras

Farnesyl Transferase inhibitors

Courtesy of Dr. Lewis Roberts, with permission
Recent Trials of Molecular-Targeted Agents in HCC

<table>
<thead>
<tr>
<th>Regimen</th>
<th>Phase</th>
<th>Sample size</th>
<th>RR%</th>
<th>PFS, TTP</th>
<th>Median survival (months)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sorafenib</td>
<td>2</td>
<td>137</td>
<td>2.2</td>
<td></td>
<td>9.3</td>
<td>Abou Alfa et al JCO 2006</td>
</tr>
<tr>
<td>Sorafenib vs placebo</td>
<td>3</td>
<td>602</td>
<td>2.3</td>
<td>5.5 (T)</td>
<td>10.7 (vs 7.9 placebo, p=0.00058)</td>
<td>Llovet et al NEJM 2008</td>
</tr>
<tr>
<td>Sorafenib vs placebo</td>
<td>3</td>
<td>150/76</td>
<td></td>
<td>TTP 2.8 vs 1.4</td>
<td>6.2 (vs 4.1 placebo)</td>
<td>Cheng et al Lancet Oncology 2009</td>
</tr>
<tr>
<td>Sorafenib + doxorubicin vs doxorubicin + placebo</td>
<td>RII</td>
<td>47/49</td>
<td>4/2</td>
<td>8.6/4.8 (T)</td>
<td>13.7/6.5</td>
<td>Abou Alfa et al</td>
</tr>
<tr>
<td>Bevacizumab</td>
<td>2</td>
<td>46</td>
<td>13</td>
<td>6.9 (P)</td>
<td>12.4</td>
<td>Seigel et al JCO 2008</td>
</tr>
<tr>
<td>Sirolimus</td>
<td>2</td>
<td>21</td>
<td>4.7</td>
<td></td>
<td>6.5</td>
<td>Rizell et al 2008</td>
</tr>
<tr>
<td>Erlotinib</td>
<td>2</td>
<td>38</td>
<td>9</td>
<td>3.2 (P)</td>
<td>13</td>
<td>Philip et al JCO 2005</td>
</tr>
<tr>
<td>Erlotinib</td>
<td>2</td>
<td>40</td>
<td>0</td>
<td>6.3 (P)</td>
<td>10.75</td>
<td>Thomas et al Cancer 2007</td>
</tr>
<tr>
<td>Cetuximab</td>
<td>2</td>
<td>32</td>
<td>0</td>
<td>1.4</td>
<td>9.6</td>
<td>Zhu et al Cancer 2007</td>
</tr>
<tr>
<td>Gefitinib</td>
<td>2</td>
<td>31</td>
<td>3</td>
<td>2.8 (P)</td>
<td>6.5</td>
<td>O'Dwyer et al ASCO 2006</td>
</tr>
<tr>
<td>Sunitinib</td>
<td>2</td>
<td>34</td>
<td>2.9</td>
<td>3.9</td>
<td>9.8</td>
<td>Zhu et al JCO 2009</td>
</tr>
<tr>
<td>Sunitinib</td>
<td>2</td>
<td>37</td>
<td>2.7</td>
<td>5.2</td>
<td>11.2</td>
<td>Faivre et al ASCO 2007</td>
</tr>
<tr>
<td>Brivinib</td>
<td>2</td>
<td>55</td>
<td>2.8 (T)</td>
<td>10</td>
<td></td>
<td>Raoul et al 2009</td>
</tr>
<tr>
<td>Bevacizumab + erlotinib</td>
<td>2</td>
<td>40</td>
<td>25</td>
<td>9.0 (T)</td>
<td>15.65</td>
<td>Thomas et al JCO 2009</td>
</tr>
<tr>
<td>Bevacizumab + erlotinib</td>
<td>2</td>
<td>59</td>
<td>27.5</td>
<td></td>
<td></td>
<td>Kaseb, Garrett-Meyer, Thomas et al 2011 (in press)</td>
</tr>
</tbody>
</table>

First International Course of Translational Hepatology, Florence, 2011
Phase II trial of bevacizumab and erlotinib in HCC

- **Trial based on:**
 - Importance of VEGF and EGF in HCC carcinogenesis.
 - Improved survival of bevacizumab, erlotinib in multiple other tumor types.

- **Single-arm, open label trial of B+E in unresectable HCC**
 - Bevacizumab (humanized mAb against VEGF-A ligand)
 - Erlotinib (oral tyrosine kinase inhibitor TKI binds EGF)

- **Primary Endpoint progression-free survival at 16 weeks therapy >50%**
 - Based on “historical controls” from small Phase II trials (pre-SHARP trial results)
 - Goal: identify meaningful “biologic signal” of drug activity
 - Evaluate safety of dual targeted agents in HCC.

- **Eligibility criteria:**
 - One prior systemic therapy allowed; unlimited regional treatments
 - Performance Status 0-2
 - Childs-Pugh A, B; bilirubin <2, transaminases ≤ 5 XULN, platelets ≥ 60,000
 - Portal vein thrombus allowed
 - No fibrolamellar HCC
 - Prior variceal bleeding allowed if >3 months.
Summary of Survival Data: ITT Analysis

<table>
<thead>
<tr>
<th>Prior treatment history</th>
<th>PFS in months Median (95% CI)</th>
<th>OS in months Median (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No prior treatment (n=44)</td>
<td>8.8 (5.5, 10.1)</td>
<td>15.6 (9.5, 19.5)</td>
</tr>
<tr>
<td>Prior treatment with sorafenib (n=8)</td>
<td>7.9 (4.2, 13.3)</td>
<td>13.3 (4.2, 22.3)</td>
</tr>
<tr>
<td>Prior treatment with other systemic therapy (n=6)</td>
<td>6.6 (1.9, 11.0)</td>
<td>14.4 (1.9, Inf*)</td>
</tr>
</tbody>
</table>

Upper limit is infinite because of the small number of patients with prior treatment with regimens not including sorafenib.
Radiographic evidence of tumor responses in HCC patients treated with bevacizumab and erlotinib
Computed tomography of the abdomen of a 76 year old man with multi-focal hypervascular HCC in right lobe liver, baseline.

Decreased tumor vascularity, partial tumor response after 6 months bevcizumab and erlotinib.
62 yo man with multifocal recurrent HCC, PVT 4 mos after extended rt hepatectomy
Baseline alpha-fetoprotein (AFP) 214,046

After 16 weeks B+E, partial response, AFP 287
Sustained PR after 10 mos
29 yo man with cirrhosis, metabolic syndrome, massive HCC. Baseline, AFP 70,000

Restaging CT after 16 weeks bevacizumab + erlotinib decreased tumor vascularity, AFP 30,000
50 yo man with recurrent HCC in right portal vein (tumor thrombus) and adjacent liver. Tumor effacing IVC. Baseline AFP 2,073

PR after 8 weeks B+E, improved IVC flow. AFP 482
63 year old woman with hypervascular HCC, right lobe. Significant portal HTN precluded resection.

Decreased tumor vascularity after 8, 16 weeks treatment with B+E.
Radiographic Evidence of Tumor Response to B+E in Second-Line Setting After Progression on Sorafenib
48 yo woman presented with ruptured 9 cm HCC 8/05, underwent primary resection. Developed recurrent multiple abdominal implants 3/06; failed 5FU/IFN

Patient treated with B+E off-protocol; significant radiographic response after 6 mos. 2/07 underwent resection of prior incision, port sites, residual implants. No tumor detected in any specimen=pCR. Free of disease June 2008

Thomas et al Journal of Surgical Oncology Oct 2007
An exciting time in hepatocellular carcinoma...

- SHARP trial established sorafenib as standard of care systemic therapy for advanced disease patients

- Explosion of interest and clinical research in HCC-
 - 156 actively recruiting, phase II or III interventional trials in HCC listed on www.clinicaltrials.gov
 - Broad international recruitment
 - Multiple trials for each stage of disease

- Numerous targeted agents are now in clinical trials

-However - are the “right” agents being studied?
Current Randomized Trials in HCC

<table>
<thead>
<tr>
<th>Regimen</th>
<th>Study Phase</th>
<th>Rationale</th>
</tr>
</thead>
</table>
| Sorafenib vs Sunitinib | III | OS Sorafenib 10.7 months Ph III
OS Sunitinib 8-9.8 months in 2 Ph II
Closed at 1st interim analysis for futility |
| Sorafenib vs Erlotinib + Sorafenib | III | OS Sorafenib 10.7 months Ph III |
| Sorafenib vs Bevacizumab+Erlotinib | Randomized Ph II | OS Sorafenib 10.7 months Ph III
TTP 5.5. vs 2.8 months
Response rate 28%
OS B+E 15.6 months (n=58)
TTP 8.8 months |
| Sorafenib vs Brivinib | III | OS Sorafenib 10.7 months Ph III
OS 10 months Ph II |
| Sorafenib vs doxorubicin+sorafenib | III | OS Sorafenib 10.7 mos Ph III
OS Dox+S 13.8 mos Randomized Ph II |
| Sorafenib vs ABT869 | I/II | OS Sorafenib 10.7 mos Ph III
OS 9.7 months Ph II |
Conclusions:

- HCC is a highly molecularly complex tumor...
- ...Yet a single agent sorafenib, that targets ras-raf-signaling pathway is the first chemotherapy agent to improve patient survival.
- The prominent role of growth factor dysregulation in HCC provides opportunities to develop potent, combination targeted therapy strategies.
- It is essential to develop molecular characterization systems of all stages and etiologies of HCC.
Molto grazie

Please come visit Charleston, South Carolina.