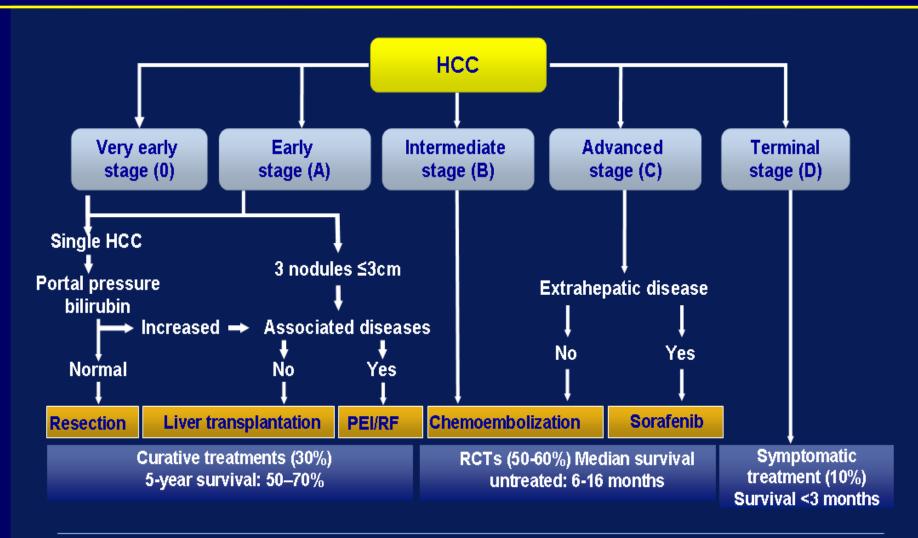
First International Course of Translational Hepatology
"Focus on HCV Disease"
Firenze, 9-11 march 2011

Liver Transplantation and other therapies in HCV+ patients with liver tumours

Professor Andrew K Burroughs FRCP, FMedSci

The Royal Free Sheila Sherlock Liver Centre



Outline of talk

- Current approach to therapy of HCC
- Liver transplantation for HCC
- Staging of HCC and liver transplantation
- Adjuvant therapy for HCC pre-liver transplant
- Other therapies
- Potential future therapies

Current approach to therapy of HCC

BARCELONA STAGING STRATEGY

Adapted from Llovet JIVI et al, Lancet 2003;362:1907-1917

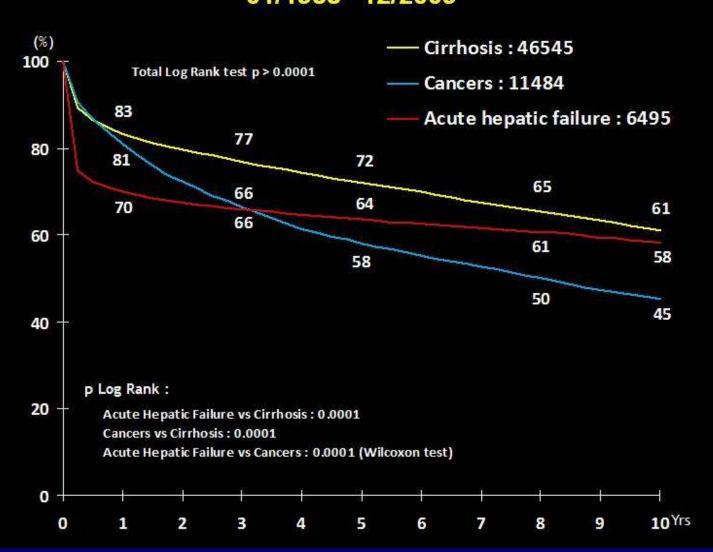
The Barcelona Clinic Liver Cancer (BCLC) Staging System

Stage	PS	Tumor stage	Child-Pugh
A. Early	0	Single < 5 cm 3 nodes < 3 cm	A & B
B. Intermediate	0	Large/multinodular	A & B
C. Advanced	1-2	Vascular invasion extrahepatic spread	A & B
D. End-stage	3-4	Any of the above	С

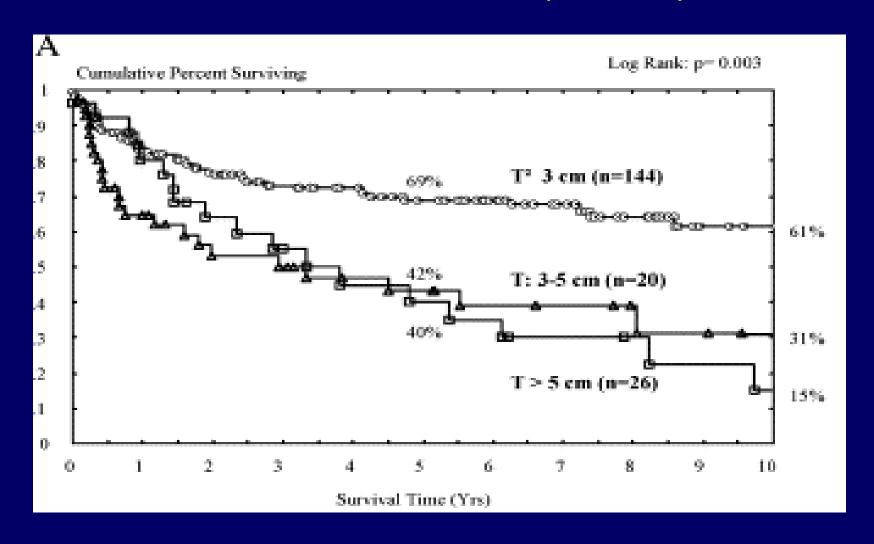
Liver transplantation for HCC

Liver transplantation as therapy for HCC in cirrhosis

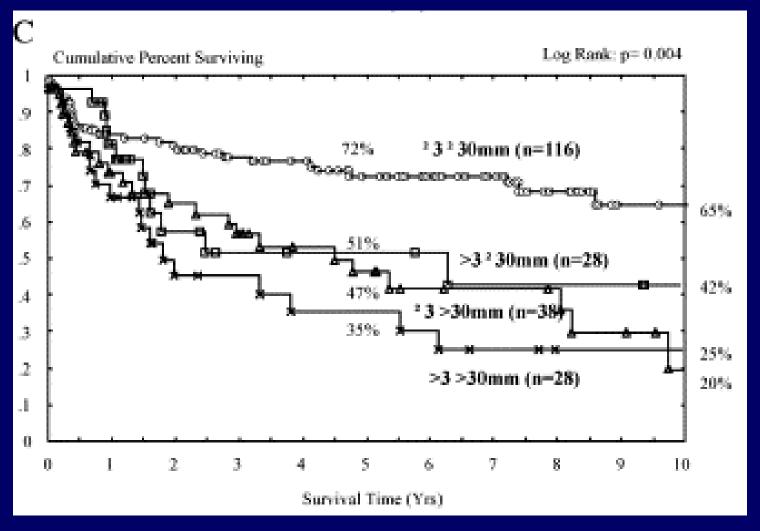
- Removes the tumour
- Prevents metachronous lesions
- Removes the cirrhosis


- Not immediate therapy
- Risk of surgery
- Risk of recurrence

Patient Survival according to the Indication

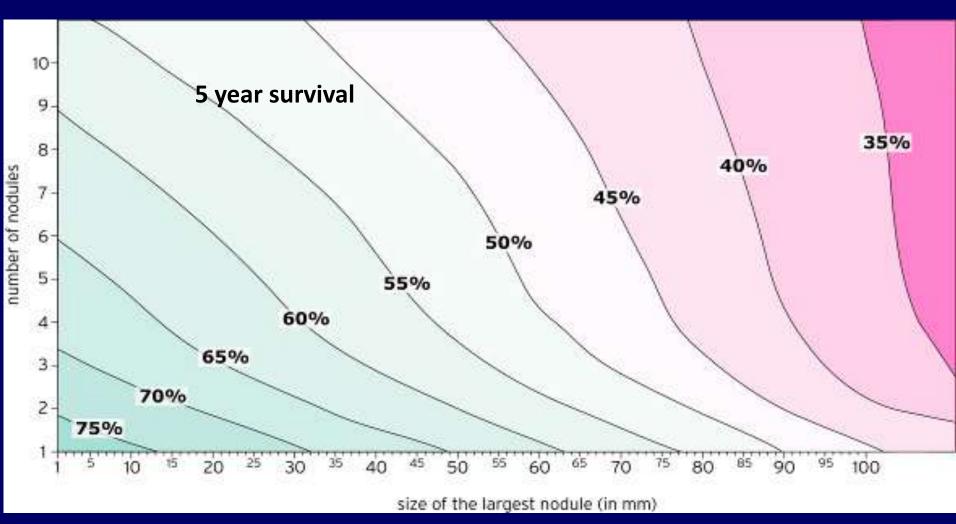


01/1988 - 12/2009



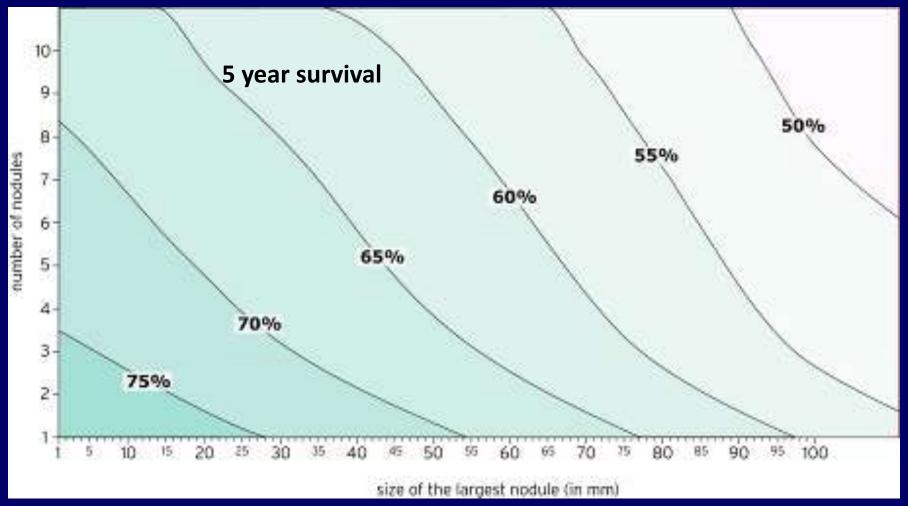
Staging of HCC and liver transplantation

Liver transplant and HCC: maximum size of nodule and survival (Adam 2003)



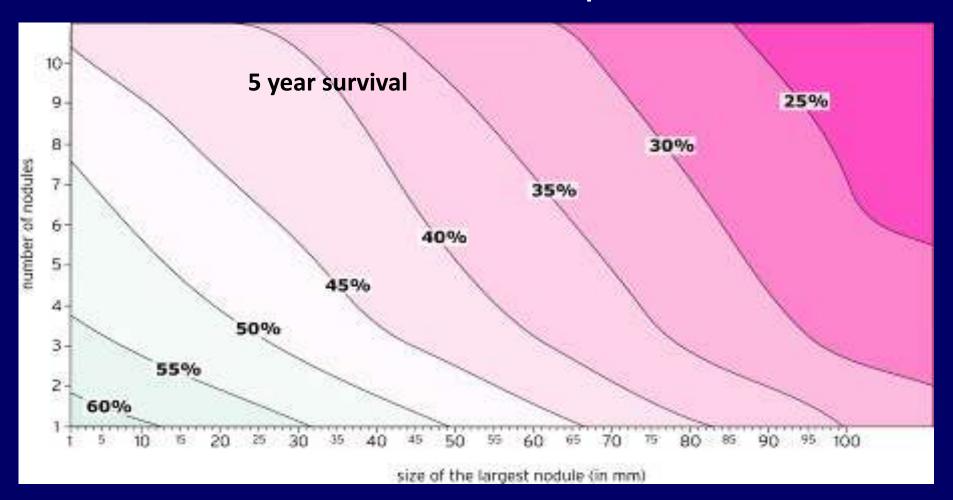
Liver transplant and HCC: maximum size and number of nodules (Adam 2003)

PREDICTING SURVIVAL AFTER LT IN PATIENTS WITH HCC (Mazzaferro 2008)


Contour plot according to Size and Number of HCC nodules

PREDICTING SURVIVAL AFTER LT IN PATIENTS WITH HCC

(Mazzaferro 2008)


Contour plot according to Size and Number of HCC nodules
- Microvascular invasion absent -

PREDICTING SURVIVAL AFTER LT IN PATIENTS WITH HCC

(Mazzaferro 2008)

Contour plot according to Size and Number of HCC nodules
- Microvascular invasion present -

Meta-analysis of staging selection criteria for liver transplantation (Germani 2010)

	Overall survival	Disease-free survival	Recurrence
Beyond Milan criteria	▼ 1.6x	♣ 3.2x	★ 2.8x
Beyond UCSF criteria	▼ 1.7x	■ 3.4x	★ 6.1x
TNM stage III-IV	▼ 1.5x	-	-
Total tumour diameter ≥10cm	♣ 4.5x	-	-
Total tumour diameter ≥9cm	-	♣ 1.9	-
Diameter largest tumour >3cm	▼ 1.5x	-	1 6.6x
Tumour "size"* ≥ 5cm	♣ 1.9x	♣ 4.3x	★ 2.5x
Tumour number (cont. var.)	ns	-	ns
Multiple tumours	ns	-	-
Tumour number (≥3)	↓ 1.2	ns	ns

^{*} without other definition

				Hazard Ratio		Hazard Ratio
Study or Subgroup	log[Hazard Ratio]	SE	Weight		Year	
1.1.2 Pre-operative				,		
Kim 2008a		0.46	2.4%	5.53 [2.24, 13.62]		
Regalia 2001		0.19	3.6%	2.20 [1.52, 3.20]	2001	-
Kneteman 2004		0.51	2.2%	1.26 [0.46, 3.42]		
Ravajoli 2004		0.19	3.6%	1.31 [0.90, 1.90]		<u> </u>
Merli 2005		0.29	3.2%	3.13 [1.77, 5.52]		-
Unitt 2006		0.15	3.8%	1.40 [1.05, 1.89]		•
Morioka 2006		0.98		35.16 [5.15, 240.03]		
Chen 2007		0.17	3.7%	2.29 [1.64, 3.20]		-
Cillo 2007	-0.34		3.6%	0.71 [0.48, 1.05]		-
Obed 2007	-0.66		3.7%	0.52 [0.36, 0.74]		-
Sotiropoulos 2007		0.25	3.4%	1.14 [0.70, 1.86]		<u> </u>
Yang 2007	0.74		2.2%	2.10 [0.79, 5.58]		
Suh 2007		0.26	3.3%	2.14 [1.28, 3.56]		
Kim 2008b		0.37	2.8%	1.90 [0.92, 3.92]		
Herrero 2008		0.37	2.9%	1.19 [0.60, 2.35]		
Silva 2008	-0.27		3.4%			
Qasim 2009	-0.35		2.8%	0.70 [0.47, 1.25]		
Taketomi 2009		0.42	2.6%	1.25 [0.55, 2.84]		
Pelletier 2009		0.15	3.8%			[_
Chen 2009		0.13	3.3%	2.39 [1.41, 4.05]		
Subtotal (95% CI)	0.67	0.27	61.1%	1.57 [1.20, 2.06]	2009	
Heterogeneity: Tau ² =	- 0.20: Chi ² - 111.0	6 df -				*
Test for overall effect			- 15 (F <	0.00001), 1 = 63%		
rest for overall effect	. Z = 3.23 (P = 0.00	1)				
1.1.3 Explant						
Mazzaferro 1996	1.16	0.37	2.8%	3.19 [1.54, 6.59]	1996	
Yao 2002		0.28	3.2%	2.77 [1.60, 4.80]		-
Zavaglia 2005	0.26		2.7%	1.30 [0.59, 2.84]		
Lohe 2005		0.15	3.8%	1.70 [1.27, 2.28]		-
Soderdahl 2006		0.64	1.8%	3.22 [0.92, 11.30]		-
Takada 2006		0.25	3.4%	1.22 [0.75, 1.99]		-
Yokoi 2006	-0.32		3.2%	0.73 [0.41, 1.28]		
Sotiropoulos 2008		1.01		33.45 [4.62, 242.15]		
Fan 2009	0.57		3.6%	1.77 [1.19, 2.62]		-
Lee 2010		0.25	3.4%	1.62 [0.99, 2.64]		
Kornberg 2010		0.38	2.8%	2.59 [1.23, 5.45]		
Subtotal (95% CI)	0.55	0.50	31.4%	1.84 [1.36, 2.47]	2010	•
	= 0.14: Chi ² = 27.75	df =				•
Heterogeneity: Tau² = 0.14; Chi² = 27.75, df = 10 (P = 0.002); i² = 64% Test for overall effect: Z = 4.01 (P < 0.0001)						
restroi overali ellett	. L - 4.01 (F < 0.00	01)				
1.1.4 Not clearly sta	ted					
Grasso 2006	-0.73	0.15	3.8%	0.48 [0.36, 0.65]	2006	-
Zheng 2008		0.17	3.7%	2.41 [1.73, 3.36]		-
Subtotal (95% CI)	3.00		7.4%	1.08 [0.22, 5.21]		-
Heterogeneity: Tau2 =	= 1.27; Chi ² = 50.43	. df =	1 (P < 0.0	00001); $I^2 = 98\%$		T
Test for overall effect: Z = 0.09 (P = 0.93)						
Total (95% CI)			100.0%	1.63 [1.31, 2.03]		♦
Heterogeneity: Tau2 =	= 0.32; Chi ² = 205.9	7, df =	= 32 (P <	0.00001); $I^2 = 84\%$		0.01 0.1 1 10 100
Test for overall effect	Z = 4.33 (P < 0.00	01)				Outside Milan Witin Milan
Test for subgroup dif	ferences: Chi ² = 16.7	4, df :	= 2 (P = (0.0002 , $1^2 = 88.1\%$		Outside Milan Milin Milan

Meta-analysis of the studies comparing overall survival between patients outside and within Milan criteria

Germani 2010

Salvage liver transplantation after resection for HCC in cirrhotics

- 80% transplantable (Poon 2003)
- 20% transplantable (Adam 2003)

More than one nodule poor prognosis resection

- Outcome can be similar to 1º transplantation
 - recurrence 8-10% (Majno 1999)

Adjuvant and alternative therapy to liver transplantation

Therapies for Hepatocellular Carcinoma

Surgical resection

Percutaneous therapies

Percutaneous ethanol injection (PEI)

Radiofrequency ablation (RFA)

Percutaneous acetic acid injection (PAI)

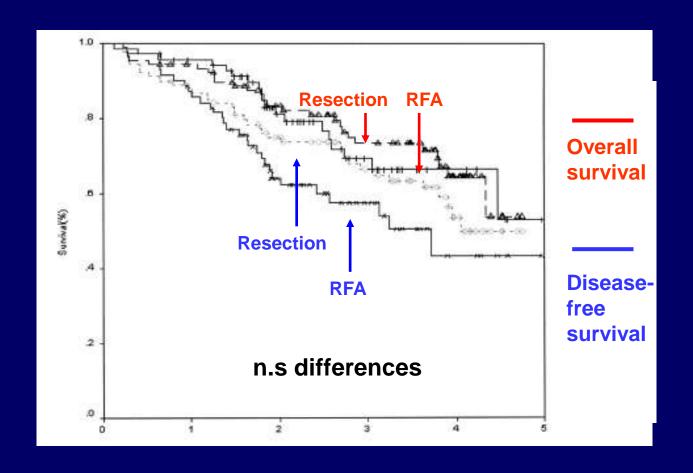
Microwave ablation and others

Transarterial therapies

Transarterial embolisation (TAE)

Transarterial chemoembolisation (TACE)

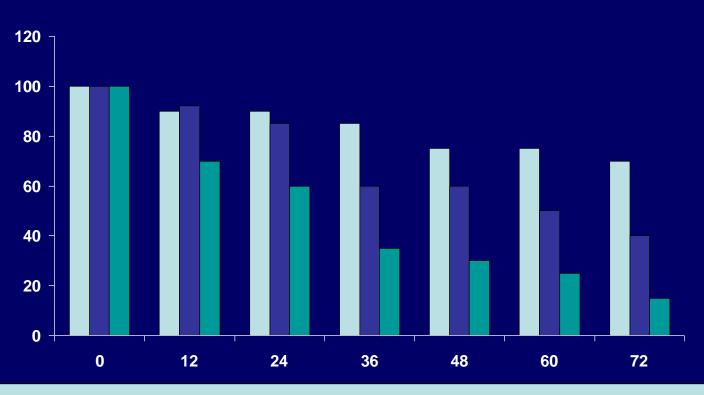
Drug eluting bead (DEB-TACE)


Transarterial radionuclide embolisation (TARE)

Transarterial oil chemoembolisation (TOCE)

Sorafenib

RFA vs SURGICAL RESECTION

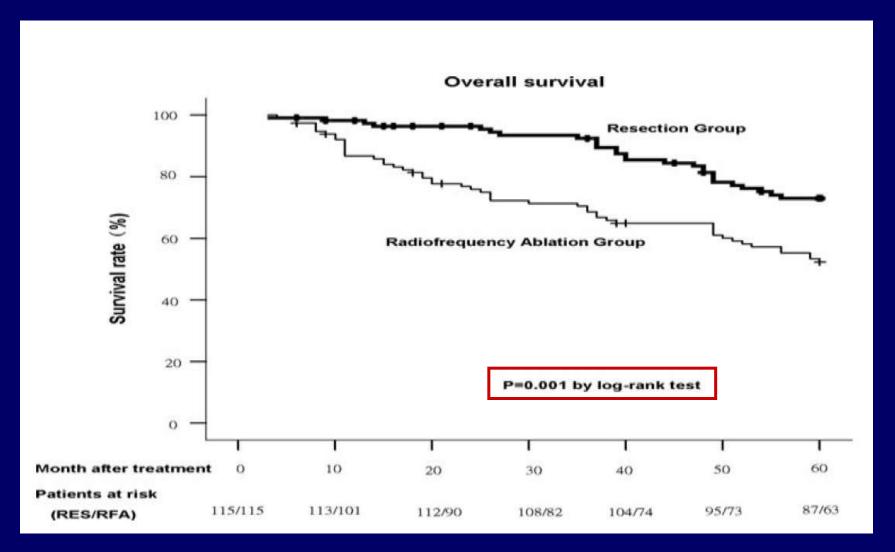

RCT: 180 patients with solitary HCC ≤ 5cm

Chen 2006

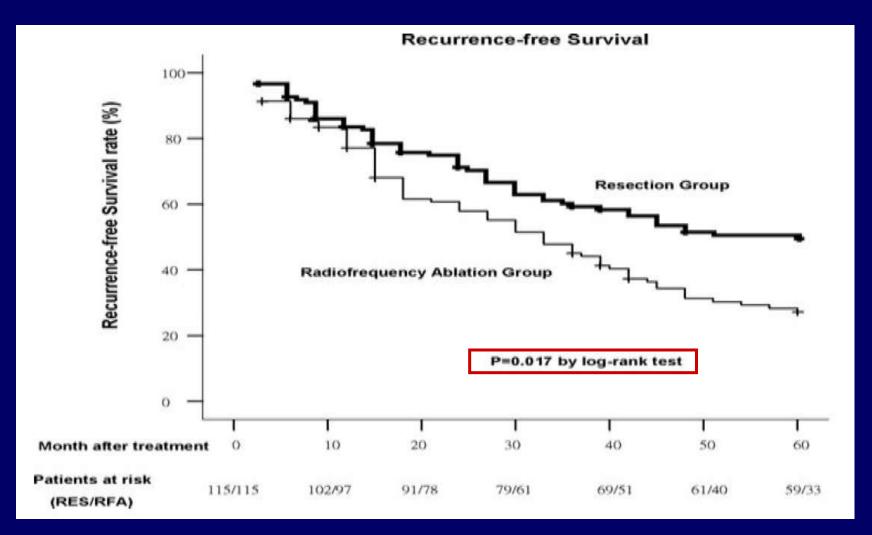
Survival following resection of HCC in cirrhosis


Llovet et al Hepatology 1999

A B C No portal hypertension HVPG < 10mmHg Portal hypertension, normal serum Bilirubin Portal hypertension and raised Bilirubin


5 yr survival 74% 5yr survival 50% 5yr survival 25%

Probability of recurrence after surgery for HCC



First International Course of Translational Hepatology, Florence, 2011

A RCT Comparing RFA and Surgical Resection for HCC Conforming to the Milan Criteria

A RCT Comparing RFA and Surgical Resection for HCC Conforming to the Milan Criteria

Salvage liver transplantation after resection for HCC in cirrhotics

- 8 pathological high risk offered LT (Sala 2004)
 - 2 refused
 - 6 OLT (5 other tumour foci)
 - 1 early recurrence
 - 4 tumour free-median f.u. 4 y

- Intention to treat analysis
 - if can transplant this is better (Adam 2003)

Adjuvant Therapy for HCC before LT

Shortage of donors

Increased waiting list

Tumour progression while waiting on list

Increased drop-out rate

(up to 20-50% if the waiting time exceeds 12 months)

Prioritization schedules affect this time-line

Adjuvant Therapy for HCC before LT

AIMS:

- To control tumour growth while patient awaits an organ

To cause significant tumour necrosis,
 which may reduce tumor dissemination during surgery

Adjuvant Therapy for HCC before LT

Aimed to Downstage?

Biological plausibility?

No evidence

Cost-Effectiveness of Adjuvant Therapy for Small HCCs During the Waiting List for LT

By statistical modelling

Ablation of small tumours with PEI, RFA, TAE, TACE is cost-effective if the expected waiting time is <u>longer than 6 months</u>
PEI increased life expectancy from 5.2 to 6.7 months at a cost of \$20000/y of life gained (cost-effective)

but

TACE may induce liver failure and death in patients with decompensated disease.

Seeding of tumor cells may occur following PEI and RFA

Llovet JM et al Gut 2002;50:123-128

RADIOFREQUENCY ABLATION

- Radiofrequency thermal energy applied to the tumor to generate coagulative necrosis
- First-line therapy for unresectable HCC in many centres
- Best outcomes: Child-Pugh A or B + HCC < 4cm
- 3 and 5-y survival = 78% and 54%
- Major complications: 2-9%

Meta-analysis of the studies comparing proportion dead, and local recurrence between radiofrequency ablation (RFA) and percutaneous ethanol injection (PEI) for hepatocellular carcinoma

	RFA	EE.	PEI	n V		Odds Ratio	Odds Ratio
Study	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% CI
Proportion dead							
Brunello 2008	26	70	28	69	26.7%	0.87 [0.44, 1.71]	-
Lencioni 2003	3	54	5	50	7.6%	0.53 [0.12, 2.34]	
Lin 2004	6	52	19	52	14.6%	0.23 [0.08, 0.63]	20 - 20 - 20 - 20 - 20 - 20 - 20 - 20 -
Lin 2005	10	62	17	62	18.6%	0.51 [0.21, 1.22]	20 - • 1 0:
Shiina 2005	25	118	40	114	32.5%	0.50 [0.28, 0.89]	
Subtotal (95% CI)		356		347	100.0%	0.52 [0.35, 0.78]	•
Total events	70		109				
Heterogeneity: Tau2 =	= 0.03; Ch	$ni^2 = 4$.	70, df =	4 (P =	0.32); I2	= 15%	
Test for overall effect:	Z = 3.17	(P = 0)).001)				
Local recurrence							
Lencioni 2003	5	54	13	50	22.9%	0.29 [0.10, 0.89]	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1
Lin 2004	7	52	16	52	27.9%	0.35 [0.13, 0.94]	25 <u> </u>
Lin 2005	10	62	26	62	35.9%	0.27 [0.11, 0.62]	
Shiina 2005	2	118	13	114	13.4%	0.13 [0.03, 0.61]	8 7 - 2 - 37
Subtotal (95% CI)		286		278	100.0%	0.27 [0.16, 0.45]	•
Total events	24		68				
Heterogeneity: $Tau^2 = 0.00$; $Chi^2 = 1.12$, $df = 3$ $(P = 0.77)$; $I^2 = 0\%$							
Test for overall effect: Z = 4.91 (P < 0.00001)							
							0.005 0.1 1 10 200
							Favours RFA Favours PEI

No statistical difference if tumour ≤ 2 cm

Germani et al. J Hepatol 2010

RFA before liver transplantation

	Mazzaferro 2004	Lu 2005
Patients	50	52
Morbidity	8%	-
Transplanted	100%	94%
Mean wt	9.5m	12.5m
Survival 3yr	83%	76%
Recurrence	4%	0%
Necrosis explant	55%	85%

SEEDING FOLLOWING LIVER BIOPSY / LOCOREGIONAL THERAPY

Cohorts with total number biopsies stated

SEEDING	median risk			
- Biopsy alone	2.28%	(0-11%)		
- PEI and biopsy	1.4%	(1.15-1.85%)		
- RFA NO biopsy	0.61%	(0-5.56%)		
- RFA and biopsy	0.72%	(0-10%)		

NB HCC higher risk of seeding than other tumours

Pancreatic (0.003-0.017%)

Probably under-reported

(Stigliano 2007)

TRANSARTERIAL EMBOLISATION Criteria

Inclusion

- Unresectable
- >3cm or >3 lesions
- Child Pugh A and B
- Okuda I or II

Exclusion

- Vascular invasion
- Refractory Ascites
- Renal impairment
- Poor PS
- Encephalopathy
- Extrahepatic disease

TRANSARTERIAL EMBOLIZATION Variables

- Particles
 - Gel foam
 - PVA
 - microspheres

- Extent of embolisation
 - Lobar
 - Segmental
 - Subsegmental

- Chemotherapy
 - none
 - Cisplatin
 - Doxorubicin
 - Mitomycin C
 - 5FU
 - Frequency
 - Fixed
 - PRN

Marelli 2007

EMBOLISING AGENTS AND TRANSARTERIAL THERAPY (Pleguezuelo 2008)

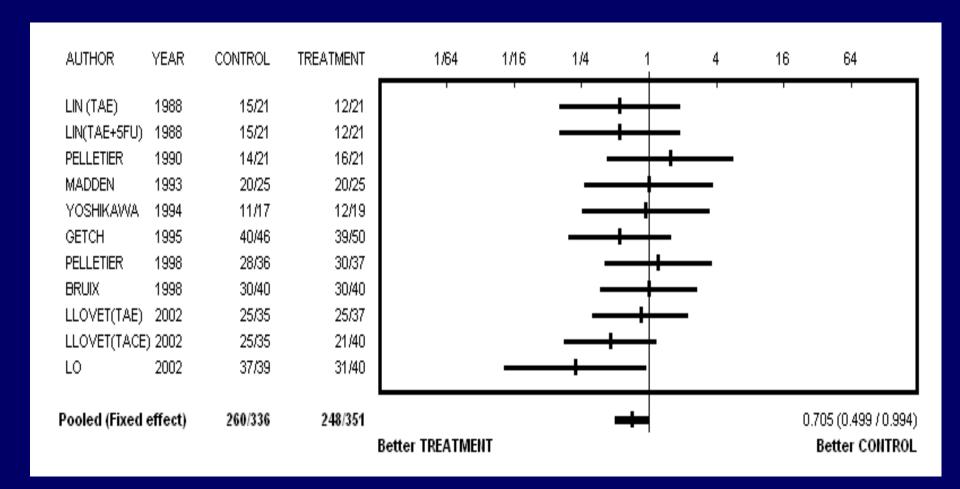
TRANSIENT ARTERIAL OCCLUSION

- Gelatin sponge:
 - particles, pellets, powder, fragments, strips (Lo 2002, Llovet 2002)
 - last 2 weeks (Coldwell 1994; Chung 1998)
- DSM (Degradable starch microspheres): 80min occlusion (Dakhil 1982)
- Autologous blood clot (Gunji 2002)

EMBOLISING AGENTS AND TRANSARTERIAL THERAPY

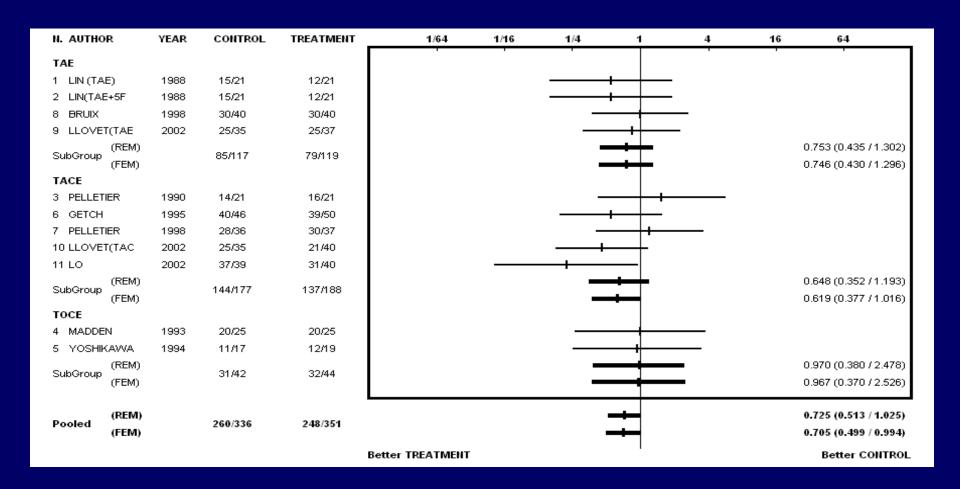
(Pleguezuelo 2008)

PERMANENT ARTERIAL OCCLUSION

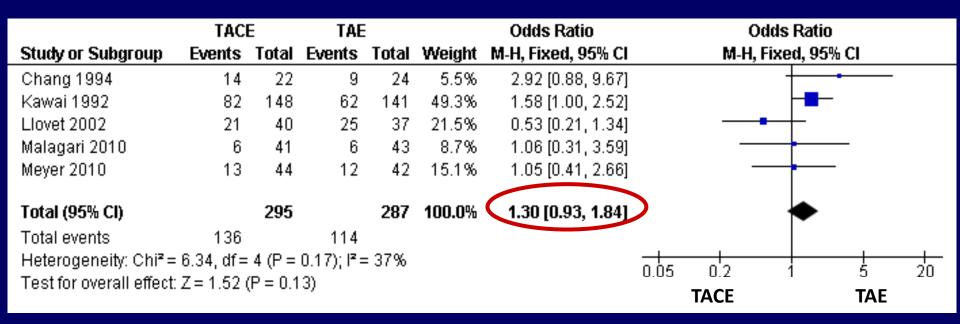

PVA particles (50-250μm diameter)

No difference vs. Gelfoam (Brown 2005)

- DEB (drug eluting beads) (100-300 and 300-500 μm diameter) Loaded with doxorubicin (Varela 2007)
- EMBS (embospheres) (100-300 μm diameter)


More deformable (Amesur 2008)

TRANSARTERIAL EMBOLIZATION vs CONTROLS


Marelli 2007

TACE / TAE / TOCE vs CONTROLS

Marelli 2007

Survival outcomes following TACE or TAE in patients with HCC in the five existing RCTs to date

TRANSARTERIAL EMBOLIZATION Toxicity

- Post embolisation syndrome 60-80%
- Liver failure 7.5% (range 0-48%)
- Abscess 1.8%
- Bile duct injury 2%
- Upper GI bleeding 3%
- Irreversible renal dysfunction 2.8%
- 30 day mortality 2.4%

Marelli 2007

TACE BEFORE LT- SYSTEMATIC REVIEW

- 5 comparative studies (1600 patients)
- 5 cohort studies (197 patients)
- 4 comparative studies with HCC meeting Milan criteria,
 showed no significant difference in either disease-free
 survival or overall survival between TACE before OLT
 (n=193) vs OLT alone (n = 206)

TACE BEFORE LT - COMPLICATIONS

- Complication rate: 27%
- Fever and abdominal pain are the most common
- Risk of liver failure related to pretreatment liver function (Child C: 60%)
- Related mortality up to 4%
- Not appropriate in decompensated cirrhosis

Lo 2002; Llovet 2002; Poon 2000

TACE AS A BRIDGE TO LT FOR HCC: An evidence-based analysis

- 12 studies (4 comparative; 8 non-comparative)
- Pre-LT TACE does not improve long-term survival
- There is no convincing evidence that TACE allows expansion of current selection criteria for LT, nor that TACE decreases drop-out rates on the waiting list
- TACE does not increase the risk of postoperative complications
- There is insufficient evidence that TACE offers an benefit when used prior to LT, neither for early nor for advanced HCC

EFFICACY OF TACE BEFORE LT – SYSTEMATIC REVIEW

Complete tumour necrosis was achieved in a median of 15% of treated nodules (range 0-28%)

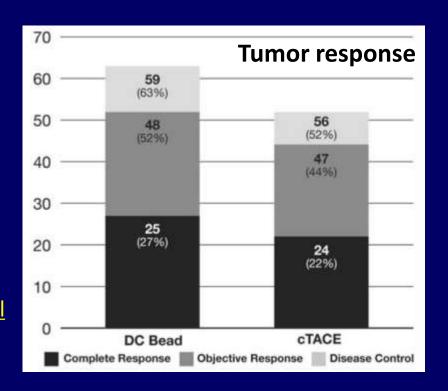
Tumour necrosis > 50% was achieved in a median of 60% of nodules (21-100%)

No study reported correlation between the amount of tumour necrosis and the recurrence rate

INTERVAL OF EFFICACY FOR TACE FOR HCC WHILE IN WAITING LIST

- Decision analysis to simulate a RCT of TACE vs no TACE in 600 virtual patients with HCC and cirrhosis
- -TACE had statistical benefit at waitlist time breakpoints of 4 and 9 months (p < 0.05)
 - · Time < 4m: Waitlist attrition similar (20 vs 38%; p=0.08)
 - Time > 9m: Drop-out rates similar (33% vs 46%; p=0.06)
- -TACE may be limited to patients transplanted between 4 to 9 months from first TACE.

Aloia, 2007


DRUG ELUTING BEADS (DEB)

- Beads (100-300 and 500-700 μm)
- Beads are entrapped in the neoplastic vascular bed and cytotoxic drug is released locally:
 - Sustained release (2 weeks)
 - Higher tumour concentration
 - Lower plasma concentration

Hong 2006

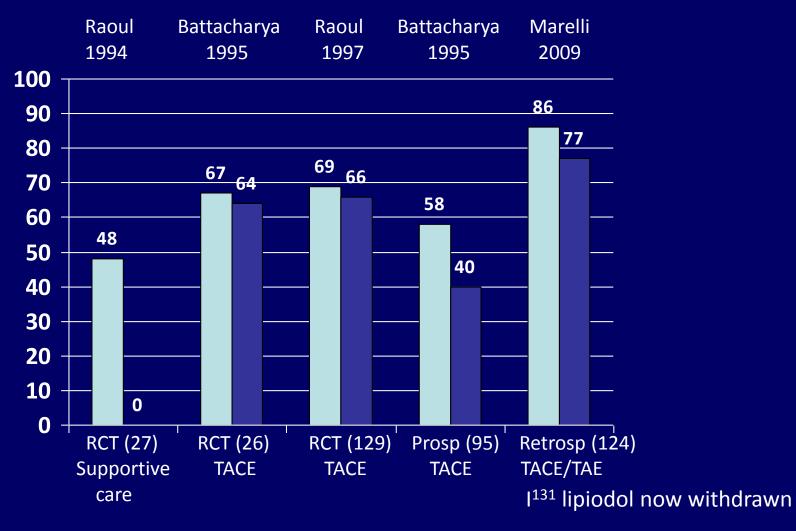
Randomized study of doxorubicin-eluting-bead embolization v. TACE for HCC: PRECISION V Study

No difference in survival

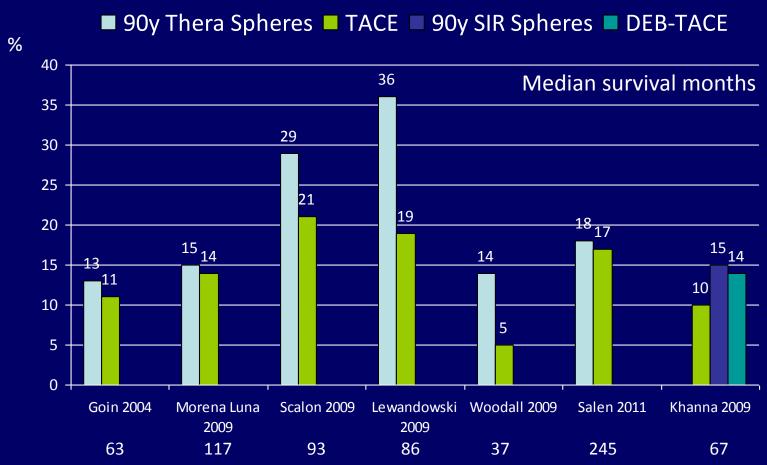
- Increase in objective response in Child B, ECOG 1, bilobar disease and recurrent disease patients
- DC Bead associated with
 - improved tolerability (p<0.001)
 - lower rate of doxorubicin-related side effects (p=0.0001)

(Lammer 2010)

Safety Profile of Sequential Transcatheter Chemoembolization with DC Beads for HCC

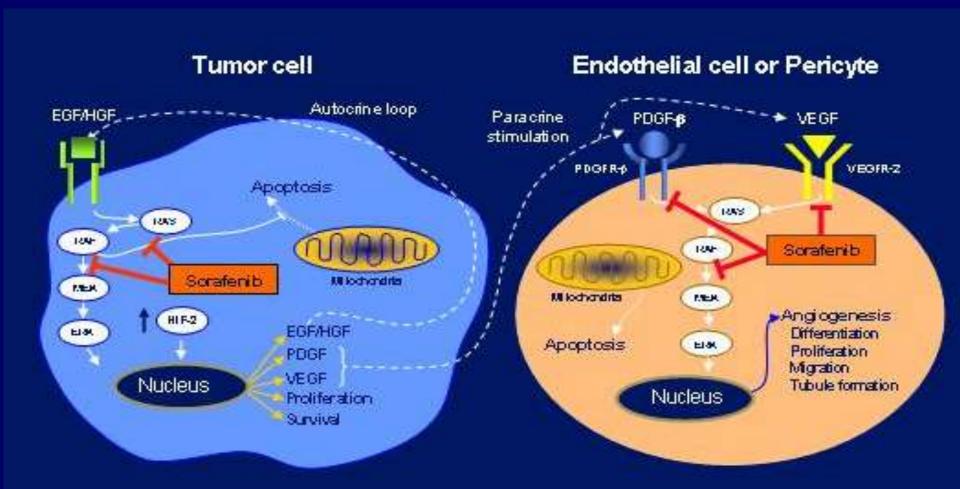

237 pts treated with sequential DEBDOX with doxorubicin

•	30d mortality	1.26%
•	Grade 5 complications	1.26%
•	Grade 4 complications	5.48%
•	Grade 2 liver function deterioration	4.2%
•	Cholecystitis/grade 2 and 4	5.48%
•	Post-embolization syndrome grade 1 or 2	86.5%
•	Pleural effusion	3.37%
•	Grade 1 procedure-related pancreatitis	0.45%
•	grade 2 gastrointestinal bleeding	0.84%
•	Procedure-associated skin erythema	0.84%


 No correlation of liver failure/liver function deterioration with bead diameter (100-300 vs 500-700 μm)

(Malgari 2010)

Survival of comparative studies of TARE I¹³¹ lipiodol first line therapy for unresectable HCC



Survival in comparative studies of 90Y microspheres TARE as first line therapy for unresectable HCC

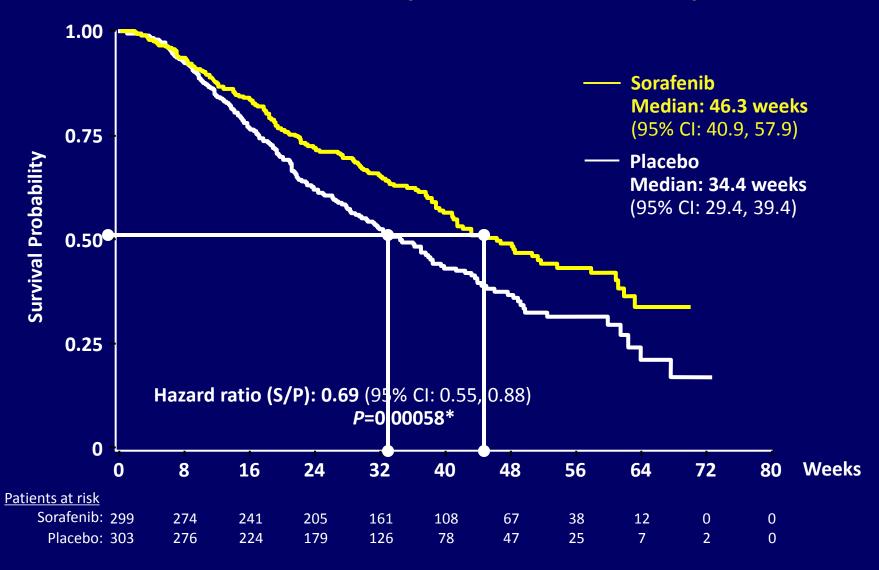
Includes cirrhotics with PVT

SORAFENIB

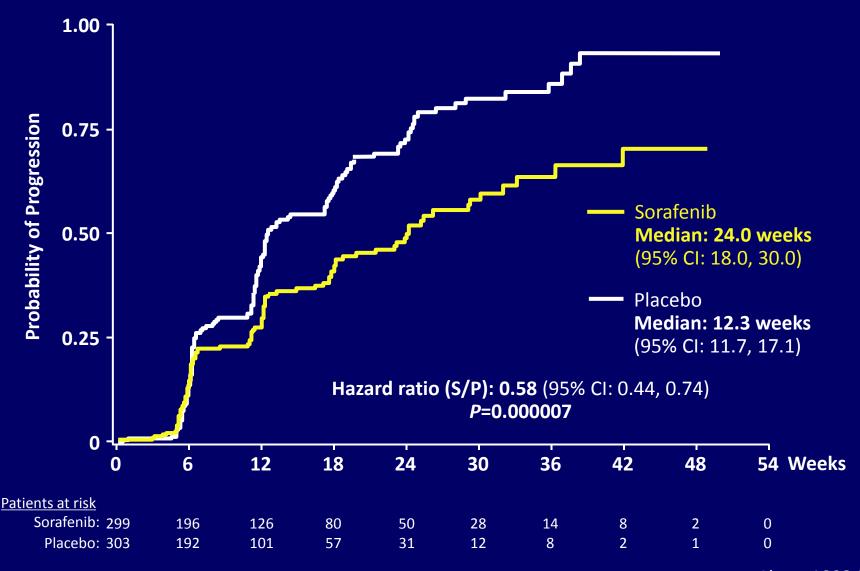
Withelm Siet al. Cancer Res. 2004;64:7099-7109.

SORAFENIB Rationale for Sorafenib

VEGF and Raf kinase are overexpressed and activated in HCC

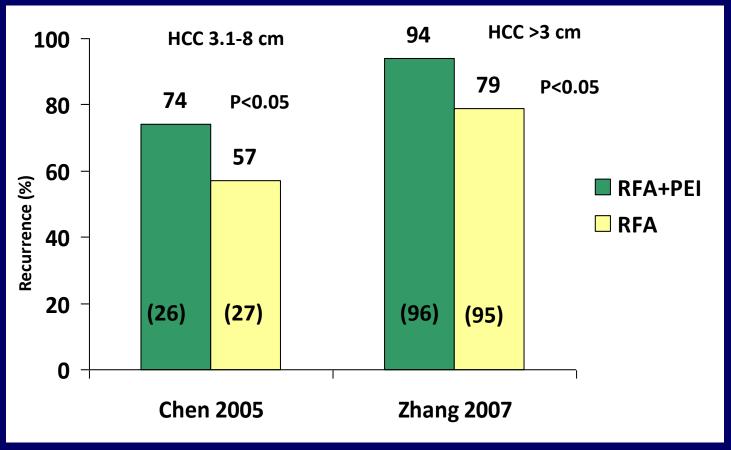

 RAF/MEK/ERK signalling pathway implicated in hepato-carcinogenesis

 Sorafenib is a multikinase inhibitor of Raf, VEGF, and other kinases.

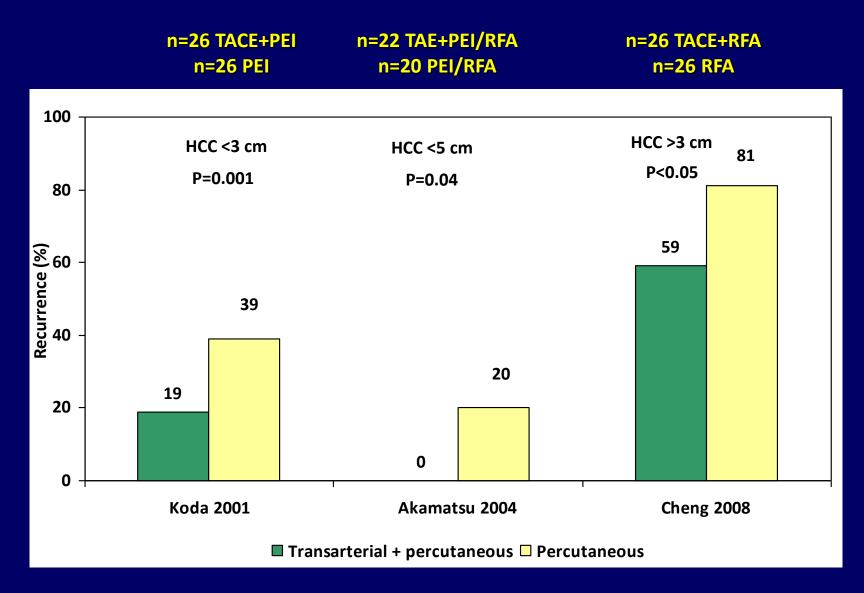

SORAFENIB - SHARP study design

- International, multi-center Phase III
- Inclusion criteria
 - Histology-proven HCC
 - Advanced HCC
 - At least 1 measurable untreated lesion
 - ECOG 0-2
 - Child-Pugh A
 - No prior treatments
- Accrual 3/05-4/06
- Intention-to-Treat analysis

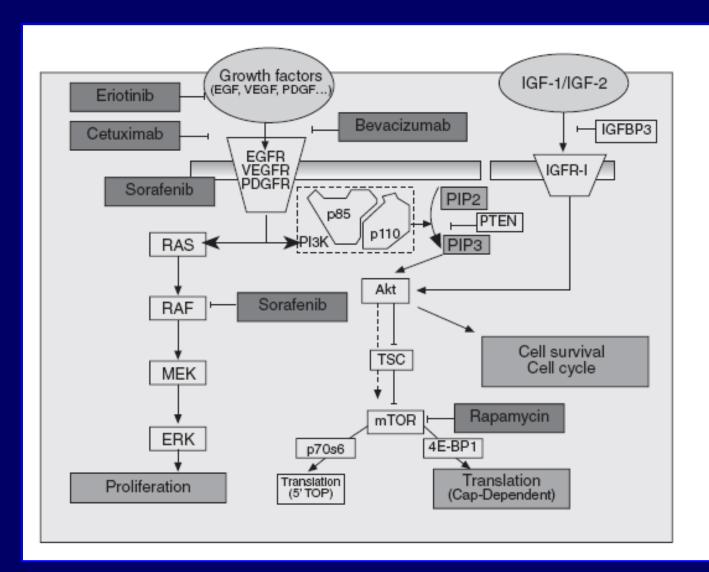
SORAFENIB - Phase III SHARP Trial Overall survival (Intention-to-treat)


SORAFENIB - Phase III SHARP Trial Time to progression (Independent central review)

Potential future therapies


- Combined transarterial and percutaneous techniques
- Sorafenib and transarterial combinations
- New drugs molecular profiling

THERAPY COMBINATIONS TACE + PEI vs. TACE



	TACE+PEI	TACE	
Complete necrosis (%)	85	52	p<0.05 (Bartolozzi 1995)
	55	5	p<0.05 (Cheng 2008)

THERAPY COMBINATIONS TACE+PEI vs. RFA

MOLECULARLY TARGETED AGENTS

Targets and agents

EGFR:

TKI: Erlotinib, Lapatinig

Gefitinib

Ab: Cetuximab

VEGF:

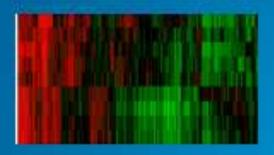
TKI: Sorafenib Ab: Bevacizumab

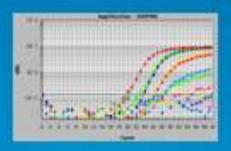
RAF:

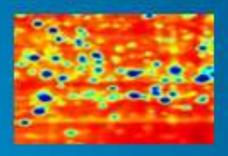
TKI: Sorafenib

mTOR:

Rapamycin


Proteasome inhibitors:


Bortezomib

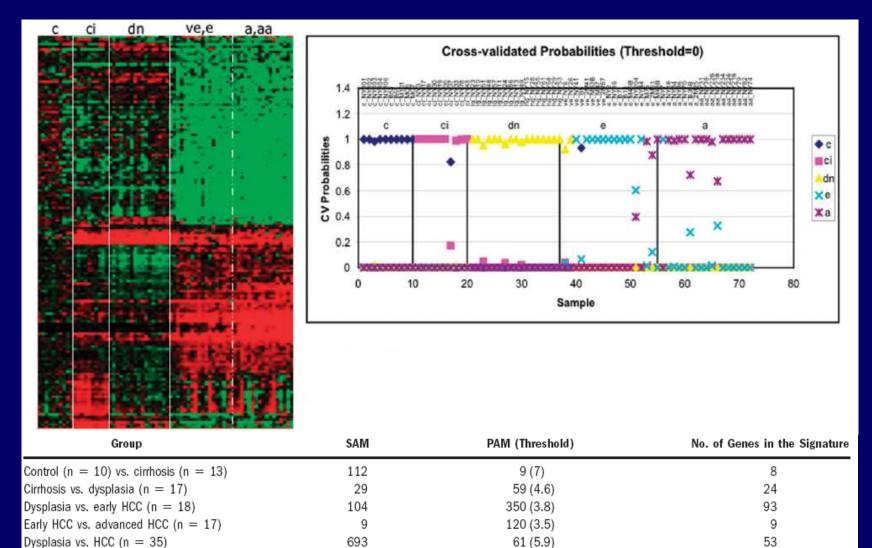

ClinicalTrials.gov

- FOLFOX4 vs Doxorubicin Phase III
- Doxorubicin+Bortezomib Phase II
- Oxaliplatin/Capecitabine/Cetuximab Phase II
- Dasatinib Phase II
- Sirolimu+Bevacizumab Phase I
- Sunitinib Phase II
- Gefitinib Phase II
- Bevacizumab Phase II
- Bevacizumab+Erlotinib Phase II
- Capecitabine Phase II
- Thalidomide Phase III
- Etoposide/Oxaliplatin/Capecitabine Phase II

Gene and Protein Expression Profiling

cDNA microarray (HBV infection)

Real-time RT-PCR (HCC) Proteomics (metastatic HCC)


- Oncogenes())
 - · c-MYC
 - · c-MYB
- Tumor suppressor genes (1)
 - p53
 - · PTEN
 - · APC
 - · WAE1
 - W71

- Tyrosine kinases
 - ₱ PDGFR-œ
 - Tie-2
- Growth factors:
 - IGF-2
- DNA modulators
 - Topoisomerase II a.
 - Telomerase RT

Cytokeratin

Warg XV et al. Toxicology 181-192 2002 181/192-43-47. Z. Lie J-S et al. Populology. 2019-40 987-976. 3. Parada V et al. Am J Parley 2013 193 793 741. 4. Ding S-J et al. Mol Cert. Proteomics. 2014:3 75-81.

Genome-Wide Molecular Profiles of HCV-Induced Dysplasia and HCC

Wurmbach E et al Hepatology 2007;45:938-947

Conclusion pre-LT HCC therapies

- No evidence for benefit of pre-LT treatment
- Evidence for complete necrosis in some patients
- Required randomized studies
- No data on seeding from transarterial techniques
- Seeding does occur after percutaneous techniques

Therapies for HCC

- Limited access to transplantation (Milan criteria)
- Resection good patient, good surgeon, strict criteria
- Locoregional unresectable disease better than no therapy
 - RFA best lesions ≤4cm
 - TACE standardise method DEB beads
 - TAE has smallest beads 45-100 μm, maybe as good
 - pre-transplantation little data
 - combined therapies need trials

Therapies for HCC

- Radionuclides when main portal vein thrombosis
 - as first line therapy need more data

- Sorafenib in combination with loco-regional therapies
 - when locoregional therapies not possible