Immune signatures in human PBMCs of idiotypic vaccine for HCV-related lymphoproliferative disorders

Luigi Buonaguro, M.D.

Molecular Biology and Viral Oncogenesis Ist. Naz.Tumori "Fond. G. Pascale" Napoli, ITALY

Inst. of Human Virology Univ. Maryland School of Medicine Baltimore, USA

Immunogenetics Lab., Dept. Transf. Medicine, NIH, Bethesda - USA

First International Course on "Translational Hepatology, Focus on HCV disease" Florence, 9 - 11 March 2011

Risk of HCC in HCV-infected subjects

Risk of B cell NHL in HCV-infected subjects

Pathogenesis of HCV-related lymphoproliferative disorders

- HCV chronic infection has been implicated as one of the major risk factors for type II Mixed Cryoglobulinemia (MC);
- The most accredited pathogenetic mechanism is the persistent immune stimulation sustained by viral proteins which, in turn, may result in production of cross-reactive autoantibodies including cryoglobulins (i.e. monoclonal IgM RF against polyclonal IgG);
- The continuous expansion of chronically stimulated B-cells may represent a risk for malignant transformation into an overt B cell non-Hodgkin's lymphoma (NHL) in about 10% of MC patients (De Re *et al.,* 2000).

Selection of Idiotypes as Tumor-Specific Antigen

Idiotype as target for immunotherapy

The variable regions of the Ig molecule contain unique determinants, the "idiotype", that can themselves be recognized as antigens.

The idiotype of the Ig on B cell malignancies can serve as a tumor specific antigen and it is an ideal target for immunotherapy.

Idiotypic vaccination: state of the art

- Id vaccination is safe and immunogenic in NHL patients.
- Both humoral and cellular immune responses were shown to be independently associated with clinical responses.
- Single arm Phase I and II Id vaccine trials demonstrated improved progression free survival compared with historical controls.

Personalized Idiotypic vaccines: limitations

- Patient-tailored vaccine based on individual idiotype on B-cell clones;
- Complex and time-consuming approach;
- Feasible only in a limited number of highly specialized Centers;
- Drug Industry:
 - Mass produced products for mass markets
 - High margins between cost of goods and sales price
- Regulatory Bodies usually deals with manufacturing issues and large scale trials;
- Difficult comparison of the responses induced by different Id vaccines in clinical trials.

Constrained heterogeneity of Ids

✤BCR repertoire expressed by B cells involved in HCVassociated type II MC as well as NHLs is constrained to a limited number of variable heavy (VH)- and light (VL)-chain genes (De Re *et al.*, 2000).

Ig genes used by B Cell NHL in HCV+ Patients

No.	Histologic classification		H-chain		L-chain	
1	Lymphoplasmacytoid	V1-2	D2-15	J4	nd	
2	Extranodal marginal zone	V1-2	D3-3	J4	nd	
3	Lymphoplasmacytoid	V1-69	D3-9	J4	V3-20	Jk2
4	Extranodal marginal zone	V1-69	D3-22	J2	V3-20	Jk2
5	Follicle center, follicular	V1-69	D3-22	J4	V3-20	Jk1
6	Small lymphocytic	V1-69	D3-22	J4	V3-20	Jk2
7	Lymphoplasmacytoid	V1-69	D3-22	J5	V3-20	Jk2
8	Nodal marginal zone	V1-69	D3-22	J4	nd	
9	Nodal marginal zone	V1-69	D3-22	J4	V3D-20	nd
10	Nodal marginal zone	V1-69	D3-22	J4	V5	nd
11	Lymphoplasmacytoid	V1-69	D5-12	J4	V3-20	Jk3
12	Lymphoplasmacytoid	V1-69	D6-6	J4	V3-20	Jk2
13	Lymphoplasmacytoid	V1-69	D6-6	J3	V3-20	Jk1
14	Lymphoplasmacytoid	V1-69	nd		nd	
15	Lymphoplasmacytoid	V1-69	nd		nd	
16	Lymphoplasmacytoid	V1-69	nd		nd	
17	Lymphoplasmacytoid	V1-69	nd		nd	
18	Extranodal marginal zone	V3-7	D3-16	J3	nd	
19	Diffuse large cell	V3-7	D3-22	J3	V3-15	Jk1
20	Diffuse large cell	V3-7	D5-24	J3	V3-15	Jk1
21	Diffuse large cell	V3-7	D6-6	J4	V2	nd
22	Lymphoplasmacytoid	V3-23	D2-2	J5	nd	
23	Diffuse large cell	V3-23	D3-9	J4	V1-5	Jk2
24	Diffuse large cell	V3-23	D3-22	J4	V3-20	Jk2
25	Nodal marginal zone	V3-30	D7-27	J4	V2	nd
26	Extranodal marginal zone	V3-30.5	D6-13	J4	V3-15	Jk1
27	Diffuse large cell	V3-48	D3-22	J5	V2	nd
28	Lymphoplasmacytoid	V3-48	D6-13	J6	V4-1	Jk4
29	Mantle cell	V3-48	D6-19	J5	nd	
30	Nodal marginal zone	V4-30.4	nd	J6	nd	
31	Lymphoplasmacytoid	V4-34	D4-11	J2	V3D-11	Jk3
32	Diffuse large cell	V4-34	D5-18/D5-5	J4	V1-17	Jk1
33	Small lymphocytic	V4-59	D2-15	J2	V3-20	Jk1
34	Extranodal marginal zone	V4-59	D2-15	J2/J5	V3-20	Jk1

Constrained heterogeneity of Ids

The VK3-20 light chain idiotype has been selected as target for passive as well as active immunization strategy.

The Systems Biology paradigm

Points of interrogation & measurement

Visual comparison across all biological functions related to a cell-type

Transcript Functions:

- Activation
- Adhesion
- Apoptosis
- Cell death
- Cell movement
- Chemotaxis
- Cytotoxicity
- Damage
- Development
- Differentiation
- Expansion
- Migration
- Maturation
- Proliferation
- Stimulation
- Survival
- ...

Functional Categories:

- Amino acid metabolism
- Antigen presentation
- Cell cycle
- Cell death
- Cell morphology
- Cell signaling
- Cell maintenance
- Cell mediated immunity
- Cellular morphology
- Growth and proliferation
- Hematopoesis
- Humoral immunity
- Immune cell trafficking
- Inflammation
- Molecular transport
- Tissue development
- ...

Cell-type specific patterns in the infected and re-infected treatment groups based on mapping transcript state to functions/processes.

Systems Vaccinology

Bali Pulendran,1,2,* Shuzhao Li,* and Helder I. Nakaya* 1Emory Vaccine Center, Yerkes National Primate Research Center, 954 Gatewood Road, Atlanta, GA 30329, USA ²Department of Pathology, Emory University School of Medicine, Atlanta, GA, USA "Correspondence: bpulend@emory.edu DOI 10.1016/j.immuni.2010.10.006

Vaccination is one of the greatest triumphs of modern medicine, yet we remain largely ignorant of the mechanisms by which successful vaccines stimulate protective immunity. Two recent advances are beginning to illuminate such mechanisms: realization of the pivotal role of the innate immune system in sensing microbes and stimulating adaptive immunity, and advances in systems biology. Recent studies have used systems biology approaches to obtain a global picture of the immune responses to vaccination in humans. This has enabled the identification of early innate signatures that predict the immunogenicity of vaccines, and identification of potentially novel mechanisms of immune regulation. Here, we review these advances and critically examine the potential opportunities and challenges posed by systems biology in vaccine development.

Immunological Reviews

Luig Buonaguro Bali Pulendran

Immunogenomics and systems biology of vaccines

Autory Addresses Ing Respon", bil felsater" ¹Laboratory of Melecular Biology and Viral Oucogenesis &

Carrespondence to:

Laig Bompor Laboratory of Molecular Biology and Vital Oncogenesia B AES Memory Corner himos Nationale Toracei "Frod. G. Pascele" Wis Infarture) Servicesite, 1 #HULLI Stanley, July Tel: +39 881 5903373 flat: +39 081 5451276 a much interview has a

Summary: Vaccinas represent a potent tool to prevent or contain infretions doeases with high morbidity or mortality. However, despite them widepend use, we still have a limited understanding of the mechanism ADS Reference Come. Department of Supermental David underlying the effective electration of protective iteration responses by og, Jamas Saanade Tumos 'Youd Pasale'', Neples, Dely varielies. Recruit research suggests that this represents the cooperative Buory Varias Conse, Insory University, Atlanti, GA, URA article of the instate and adaptive internite systems. Internity in made of a multifaceed set of integrated responses involving a dynamic interaction of thesaurds of molecules, whose hu is constantly updated to fill the several empty spaces of this paintle. The source development of new technologies and computational mole permits the comprehensive and quantitative analysis of the interactions between all of the components of internativy over time. Here, we review the role of the innate internativy in the bost response to tactine antigets and the potential of symmus biology in providing edesant and nevel imights in the reschantants of action of vaccines to improve their design and effectiveness.

Keywords: must immunity, 1980, 2404Ps, Tills, APCs, alignin immunity

Framework for "systems vaccinology"

Pulendran et al., Immunity, 2010

OS by gene signature and treatment

Louahed et al., EORTC-NCI-AACR 2009

Different induction of relevant genes at injection site (mouse muscle) by different adjuvants

JOURNAL OF VIROLOGY, Sept. 2006, p. 9134–9143 0022-5383006/508.00+0 doi:10.1128/JVL00050-06 Copyright © 2006, American Society for Microhiology. All Rights Reserved. Vol. 80, No. 18

Baculovirus-Derived Human Immunodeficiency Virus Type 1 Virus-Like Particles Activate Dendritic Cells and Induce Ex Vivo T-Cell Responses

L. Buonaguro,^{1,2} M. L. Tornesello,¹ M. Tagliamonte,¹ R, C. Gallo,² L. X. Wang,² R. Kamin-Lewis,^{2,3} S. Abdelwahab,² G. K. Lewis,^{2,3} and F. M. Buonaguro¹

Laboratory of Viral Oncogenesis and Immunotherapies & AIDS Reference Center, Istituto Nazionale Tumori "Fond. G. Pascale," Nuples, Italy,¹ and Institute of Human Virology, University of Maryland Biotechnology Institute,² and Department of Microbiology and Immunology. University of Maryland School of Medicine,⁵ Baltimore, Maryland

Journal of Translational Medicine

Research

Immature monocyte derived dendritic cells gene expression profile in response to Virus-Like Particles stimulation

Eleonora Aricò^{1,2}, Ena Wang¹, Maria Lina Tornesello³, Maria Tagliamonte³, George K Lewis^{4,5}, Francesco M Marincola¹, Franco M Buonaguro³ and Luigi Buonaguro^{*3,4}

JOURDAL OF VIROLOOY, Jan. 2009, p. 304–313 0022-5385009508:00+0 doi:10.1128/JVL01606-08 Copyright © 2009, American Society for Microbiology. All Rights Reserved. Vol. 83, No. 1

Th2 Polarization in Peripheral Blood Mononuclear Cells from Human Immunodeficiency Virus (HIV)-Infected Subjects, as Activated by HIV Virus-Like Particles[∀]

> L. Buonaguro,^{1,2} M. L. Tornesello,¹ R. C. Gallo,² Franco M. Marineola,³ G. K. Lewis,² and F. M. Buonaguro¹*

Molecular immune signatures of HIV-1 vaccines in human PBMCs

Alessandro Monaco^{*,b}, Francesco M. Marincola^{*}, Marianna Sabatino^{*}, Zoltan Pos^{*}, Maria Lina Tornesello^{*}, David F. Stroncek^{*}, Ena Wang^{*}, George K. Lewis^d, Franco M. Buonaguro^{*}, Luigi Buonaguro^{*,d,*}

Open Access

Self-organizing heat map based on genes with immune annotations included in the ISGs and Lymphokine clusters.

(Monaco et al., FEBS Letter, 2009)

Buonaguro et al. Journal of Translational Medicine 2010, 8:18 http://www.translational-medicine.com/content/8/1/18

RESEARCH

Open Access

Immune signatures in human PBMCs of idiotypic vaccine for HCV-related lymphoproliferative disorders

Luigi Buonaguro^{1,9}, Annacarmen Petrizzo¹, Marialina Tornesello¹, Maria Napolitano², Debora Martorelli³, Giuseppe Castello², Gerardo Beneduce⁴, Amalia De Renzo⁵, Oreste Perrella⁶, Luca Romagnoli⁷, Vitor Sousa⁷, Valli De Re⁸, Riccardo Dolcetti³, Franco M Buonaguro^{1*}

Abstract

Hepatitis C virus (HCV) is one of the major risk factors for chronic hepatitis, which may progress to cirrhosis and hepatocellular carcinoma, as well as for type II mixed cryoglobulinemia (MC), which may further evolve into an overt B-cell non-Hodgkin's lymphoma (NHL).

It has been previously shown that B-cell receptor (BCR) repertoire, expressed by clonal B-cells involved in type II MC as well as in HCV-associated NHL, is constrained to a limited number of variable heavy (VH)- and light (VL)- chain genes. Among these, the VK3-20 light chain idiotype has been selected as a possible target for passive as well as active immunization strategy.

In the present study, we describe the results of a multiparametric analysis of the innate and early adaptive immune response after *ex vivo* stimulation of human immune cells with the VK3-20 protein. This objective has been pursued by implementing high-throughput technologies such as multiparameter flow cytometry and multiplex analysis of cytokines and chemokines.

Study population

SUBJECT	SEX	HCV	NHL	(CRYO %)	REUMA TEST (UI/ML)	WAALER ROSE
FMB	М	neg	N/A	n.d.	n.d.	n.d.
LB	М	neg	N/A	n.d.	n.d.	n.d.
GL	F	neg	N/A	n.d.	n.d.	n.d.
MLV	F	neg	N/A	n.d.	n.d.	n.d.
AP	F	neg	N/A	n.d.	n.d.	n.d.
MB	F	pos	Neg.	n.d.	n.d.	n.d.
SB	Μ	pos	Neg.	n.d.	n.d.	n.d.
RC	F	pos	Neg.	n.d.	n.d.	n.d.
NI	М	pos	Neg.	n.d.	n.d.	n.d.
AR	М	pos	Neg.	n.d.	n.d.	n.d.
RA	F	pos	Follicular	n.d.	n.d.	n.d.
LF	F	pos	Marginal	n.d.	n.d.	n.d.
AI	F	pos	Differ. Large B cell	n.d.	n.d.	n.d.
СМ	F	pos	Differ. Large B cell	n.d.	n.d.	n.d.
MS	F	pos	Neg.	n.d.	n.d.	n.d.
LN	М	pos	Neg.	1,50	31,2	POS.
LM	F	pos	Neg.	n.d.	n.d.	n.d.
MF	F	pos	Neg.	0,1	3,9	NEG.
MP	F	pos	Neg.	2	607	POS.
AV	М	pos	Neg.	0,5	7,7	NEG.
EB	М	pos	Neg.	1,1	670	POS.
NDA	М	pos	Neg.	n.d.	n.d.	n.d.
MRL	М	pos	Neg.	n.d.	n.d.	n.d.
DB	F	pos	Neg.	n.d.	n.d.	n.d.
ADB	М	pos	Neg.	n.d.	n.d.	n.d.

Induction of activation markers by VK3-20 in circulating subpopulations from HCV+ subjects

Software. One representative experiment is shown.

Induction of activation markers by VK3-20 in circulating DCs subpopulations and MDDCs from HCV+ subjects

Basal levels of markers in circulating APC from healthy donors and HCV+ patients

Basal levels

Maturation/activation markers induced by VK3-20 in circulating APC from <u>HCV+ subjects</u>

HCV seropositivity does not affect the responsiveness to an immunogenic stimulus of circulating APC

Basal expression of cytokines in circulating PBMCs from HCV+ and control subjects

Induction of cytokines by VK3-20 in circulating PBMCs from HCV+ subjects

Maturation/Activation markers on PBMCs of HCV+ subjects

Cytokine analysis in PBMC spn from control subjects

vĸ

VK + KLH

LPS

0

υ'Ν

TNFa Ctrl

Cytokine analysis in PBMC spn from HCV+ subjects

CONCLUSIONS

- 1. Stimulation with VK3-20-KLH conjugate induces very similar expression of specific markers compared to VK3-20 protein alone.
- 2. The surface markers show the most evident and consistent pattern of expression on CD11c+ mDC cells compared to monocytes.
- 3. The expression of activation markers and costimulatory molecules is largely comparable between control and HCV seropositive subjects.
- 4. VK3-20 protein as well as VK3-20-KLH conjugate induce the production of specific cytokines, such as TNF-α, IL-6 and IL-10.
- 5. The overall results indicate that there is no significant difference in the immunological effects induced by VK3-20 protein and the VK3-20-KLH conjugated form.

Genes highly downregulated by VLPs in HIV-infected individuals with partial "anergic" phenotype

	Pathway	Sample # 5	Sample # 12
	Interleukin	IL15RAIL-15 receptor alpha chain CSF2RBGM-CSF/IL-5/IL-3 receptor common beta chain IL15IL-15 IL1R1IL-1 receptor type I STILSCL/TAL1 interrupting locus	
	Toll-Like Receptors	TLR2Toll-like TICAM2Toll-like TLR1Toll-like LYSTLysosomal TNFAIP3A20=TNF IRF5interferon IRF7Interferon	TLR2Toll-like TRAK1Trafficking IFT122Intraflagellar TNFAIP3A20=TNF TRAF2TRAF2=TRAP3=TNFR1 STAT1STAT1=IFN ISGF3GISGF3 IRF5interferon IRF1IRF-1=interferon IRF1IRF-7=interferon
	NK cell	GNLYGranulysinGNLYGranulysinGZMBGranzyme B (cytotoxic T-lymphocyte-associated serine esterase 1)GZMBGranzyme B (cytotoxic T-lymphocyte-associated serine esterase 1)KLRC2Killer cell lectin-like receptor subfamily C, member 2GZMKGranzyme K=pre-granzyme 3=PRF1Perforin 1 (pore forming protein)KLRC2Killer cell lectin-like receptor =PRF1Perforin 1 (pore forming protein)PRF1Perforin 1 (pore forming protein)	
	CD68CD68 IFI16IFI16=IFNg-inducible myeloid differentiation transcriptional activator		CD163CD163 molecule CD68CD68 CSF1RCD115=fms=CSF-1 receptor

Adaptive	CD8+ T cell	ITGALCD11A=Integrin, alpha L=LFA-1 alpha chainITGALIntegrin, alpha LSLC2A3Solute carrier family 2 (facilitated glucose transporter), member 3SLC2A9Solute carrier family 2 (facilitated glucose transporter), member 9SLC2A8Solute carrier family 2 (facilitated glucose transporter), member 9SLC2A8Solute carrier family 2 (facilitated glucose transporter) member 8EIF2AK2Eukaryotic translation initiation factor 2-alpha kinase 2C1QBComplement component 1, q subcomponent, B chain
	B cell	TNFRSF17Tumor necrosis factor receptor superfamily, member 17 IGJImmunoglobulin J polypeptide, POU2AF1POU domain, class 2, associating factor 1 CD19= CD21/CD19/Tapa-1 co-receptor synergistic with Ig receptor

Integrating "Systems Vaccinology" into Clinical Trials

The possible "vaccine chip".

T cell signatures

Frequency of polyfunctional T cells

Magnitude of T_H2 cell response

Frequency of T cells homing to mucosal sites

Duration of T cell memory

B cell signatures

Complement fixation

In vivo neutralization

High-affinity antibody

Opsonization titres

Innate signatures

Stress response

Macrophage activation

Reactive oxygen species

Pulendran, Nature Review Immunology, 2009

Collaborators

M. Tornesello M. Tagliamonte M.L. Visciano V. De Giorgi A. Petrizzo

F.M. Buonaguro

Molecular Biology and Viral Oncogenesis Ist. Naz.Tumori "Fond. G. Pascale" Napoli, ITALY

M. Napolitano G. Castello

Clinical Immunology Unit Ist. Naz.Tumori "Fond. G. Pascale" Napoli, ITALY

G. Beneduce

Clinical Pathology Unit Ist. Naz.Tumori "Fond. G. Pascale" Napoli, ITALY

E. Aricò[^], A. Monaco[°], E. Wang F.M. Marincola

Immunogenetics Lab., Dept. Transf. Medicine, NIH, Bethesda - USA

V. de Re, D. Martorelli, R. Dolcetti

Cancer Bio-Immunotherapy Unit, Centro di Riferimento Oncologico, Aviano, Italy.

C. Sbreglia O. Perrella

VII Division of Infectious Diseases, Cotugno Hospital, Napoli, Italy.

G. Lewis, R.C. Gallo

Inst. of Human Virology Univ. Maryland School of Medicine Baltimore - U.S.A.

A. De Renzo

Haematology Unit, University of Naples "Federico II", School of Medicine, Napoli, Italy.

Funding

➢Italian National AIDS Program;

➢Italian Ministry of Research;

➢ FP7 EU Program, "NGIN" Consortium;

≻SVEU, DAIDS, NIAID, NIH

