Reverse Autoreactivity Assay to Identify New Autoantigens in Autoimmune Liver Diseases

Sergio Abrignani, MD, PhD *Istituto Nazionale Genetica Molecolare, INGM, Milano*

Firenze, March 10, 2011

Reverse Autoreactivity Assay to Identify New Autoantigens in Autoimmune Liver Diseases

Classical Autoreactivity Assays:

- Hypothesis driven approach
- Antibodies from patients screened on tissues or cells.
- Identification of most recognized antigens

Reverse Autoreactivity Assays:

- Proteome wide approach
- Antibodies from patients screened on arrays of thousands of proteins selected with the only criteria of being human, and in our case of being poorly known and dealing with the extracellular milieu (secreted or transmembrane).
- Characterization of most recognized antigens

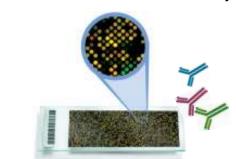
Human genes ≅ 27000 genes

"External" human genes ≅ 8000 genes

Poorly known "external" human genes ≅ 3000

in silico

Protein Array Strategy


Expression in E. coli
(2500 genes)

Purification

Recombinant proteins
(1700 proteins)

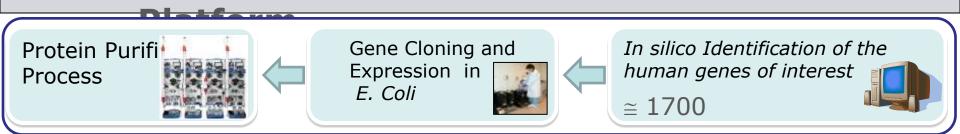
Print Custom Protein Microarray

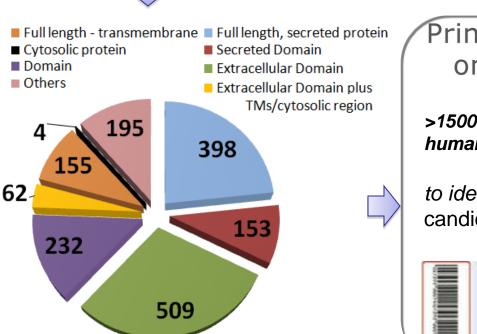
Sera from "any" patients groups

Identification of new autoantigens associated to the investigated diseases

- Protein characterisation
- Relevance for Pathogenicity
- Gene silencing (Si RNA)
- Engeneered animals (Tg, KO)

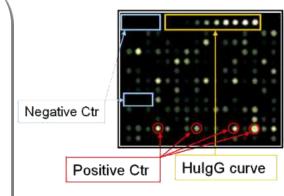
Development of new




diagnosis/ prognosis kits Target validation

First International Course of Translational Hepatology, Florence, 2011

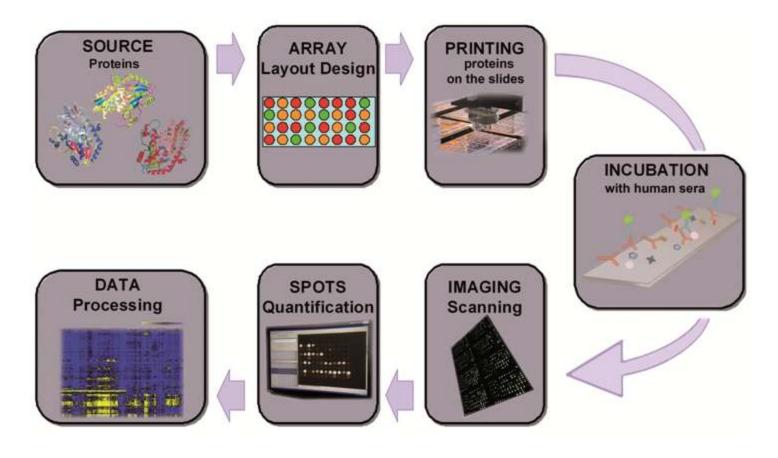
Development of Protein Microarrays



Printing proteins on the slides

>1500 – recombinant human proteins

to identify candidate autoantigens



Assay human sera on arrays

Advantages of Protein Microarray Technology

- •High Throughput Screening of thousands of proteins simultaneously
- •High Sensitivity (3-5 fold higher than other Ag-Ab detection techniques)
- •Low amount (< 0.5 μl) of serum samples required

Q: Is it possible to identify, with protein arrays, a new panel of auto-antigens that unequivocally marks autoimmune liver diseases?

Assess sera from the following patients groups:

Discovery/Validation phase: 115 patients (sera assessed with protein arrays)

15 AI: Patients with autoimmune hepatitis (**AIH**; n=8) or primary biliary cirrhosis (**PBC**; n=7)

48 HCV: Patients with HCV without auto-reactive antibodies

13 HCV+AI: Patients with HCV and Crioglobulinemia

38 HD: Healthy blood Donors

Assay phase: 80 patients (sera assessed with DELFIA assays, 96 well plate)

15 AI: Patients with autoimmune hepatitis (**AIH**; n=13) or primary biliary cirrhosis (**PBC**; n=7)

13 HCV: Patients with chronic HCV without autoreactive antibodies

17 HCV+AI: Patients with chronic HCV and Crioglobulinemia

10 HBV: Patients with chronic HBV without auto-reactive antibodies

20 HD: Healthy blood Donors

AutoImmune Hepatitis (AIH)

An unresolving inflammation of the liver of unknown cause, characterized by:

- interface hepatitis and plasma cell infiltration
- hypergammaglobulinemia
- autoantibodies (ANA, SMA, LKM1, LC1, anti-actin, anti-ASGPR)

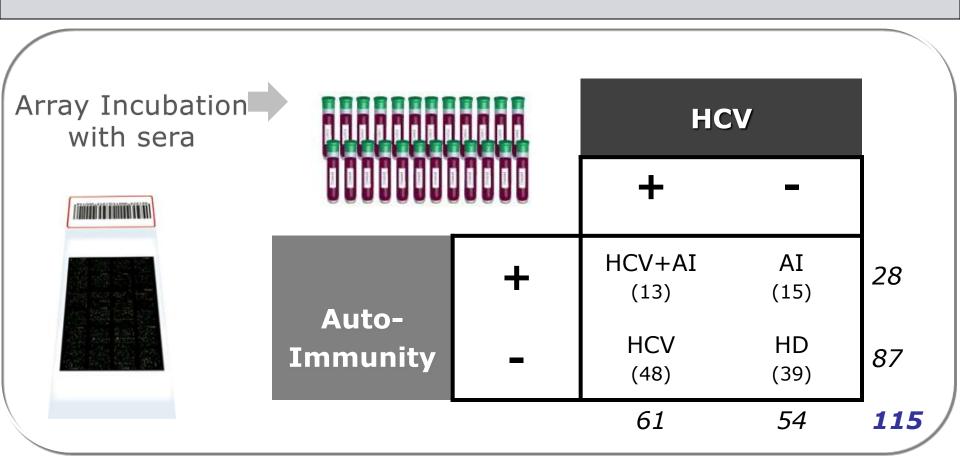
Pretty rare disease (prevalence 1-10/100.000), female sex predominant (\sim 80%), pediatric and adult onset (peak incidence during the second and the fifth decade)

Genetic susceptibility: HLA DRB1*0301, HLA DRB1*0401

Responsive to immunosuppressive therapy

Primary Biliary Cirrhosis (PBC)

A chronic cholestatic granulomatous and destructive inflammatory disease of the intrahepatic bile ducts, characterized by:


- anti-mitochondrial antibodies AMA (~90%)
- intrahepatic cholestasis (increased Alk Ph, normal US scan)
- nonsuppurative cholangitis with destruction of interlobular and septal bile ducts

Varying prevalence (0.6-40/100.000, with a "polar-equatorial gradient"), female sex predominant (~90%), peak incidence during the fifth-sixth decade

Responsive to ursodeoxicholic acid

Validation Phase: Sera Stratification

HCV: Patients with HCV without autoreactive antibodies;

HCV+AI: Patients with HCV and Crioglobulinemia;

AI: Patients with autoimmune hepatitis (AIH; n=8) and primary biliary cirrhosis (PBC; n=7)

HD: Healthy blood Donors

Strategy

Protein array

- > 1500 Human proteins
- >100 sera
- HD Vs Patients (HCV & AI)

DISCOVERY PHASE

Focused Protein array

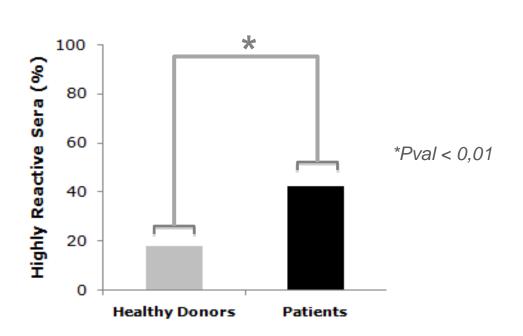
- 24 Human proteins
- > 100 sera
- HD Vs HCV Vs AI

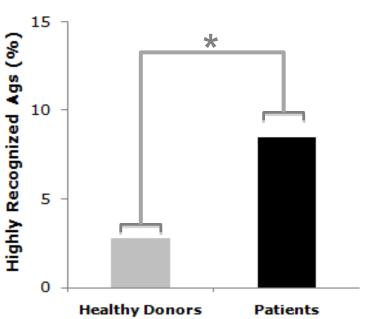
VALIDATION PHASE



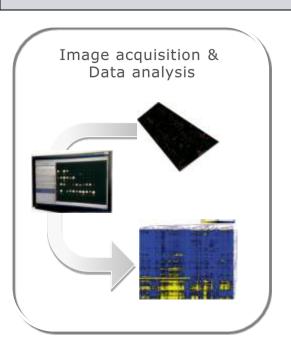
DELFIA Assay

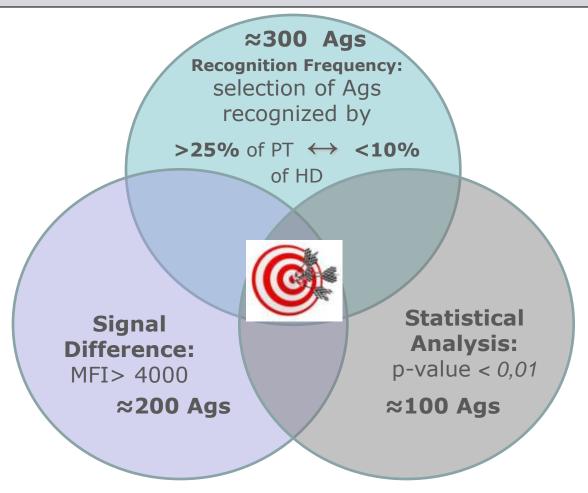
- 17 Human proteins
- > 50 sera
- HD Vs HCV Vs AI



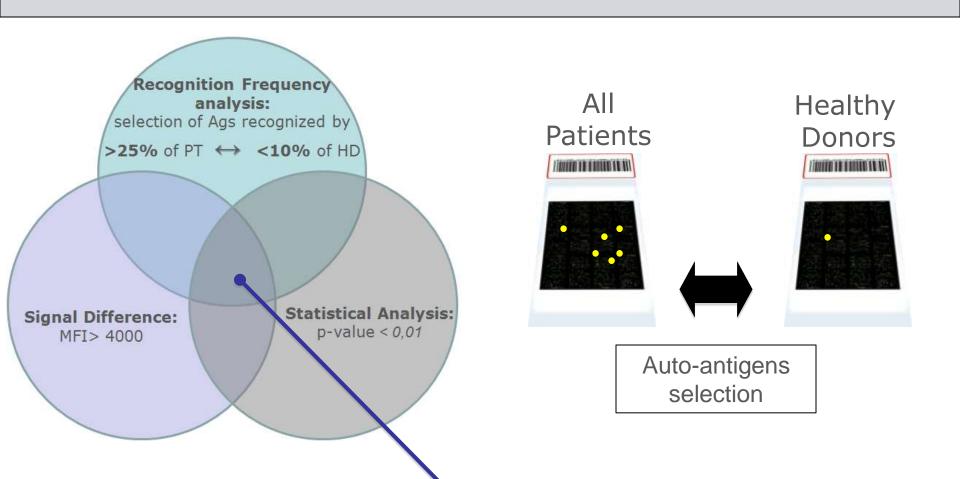

ASSAY PHASE

Sera from Patients (HCV, HCV+AI and AI all together) Show Autoreactivity higher than Healthy Donors

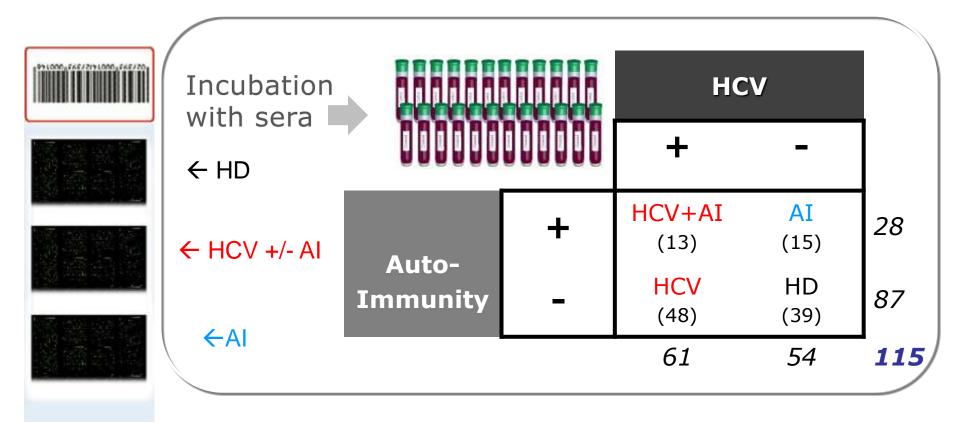

% of sera reacting with > 3% Antigens


% of Ags recognized by at least 15% of the sera

P.S.: A certain level of B lymphocytes autoreactivity is physiologic

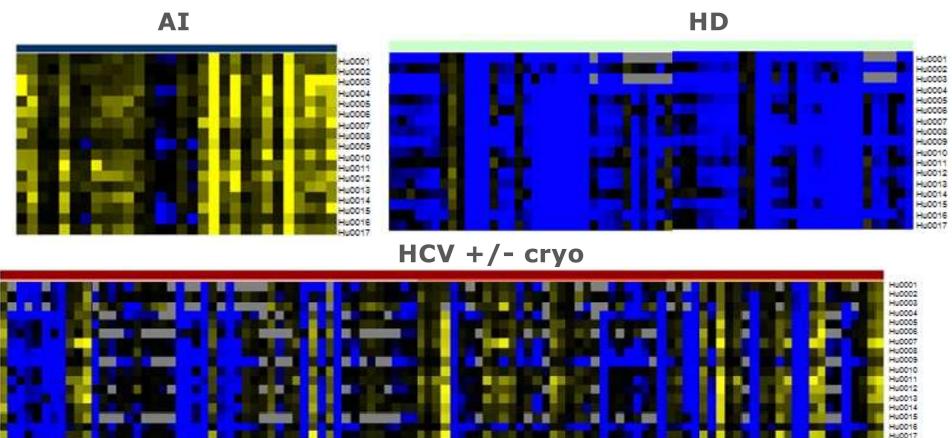

MULTIPLE CRITERIA TO SCORE POTENTIAL AUTOANTIGENS

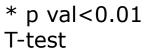
A total of 24 distinct human proteins were selected as autoantigens for further analysis

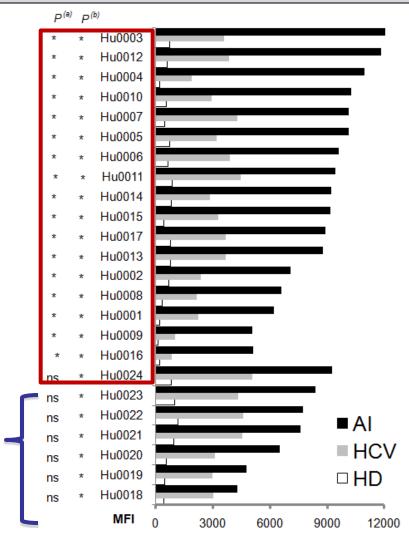


\24/1600

Focused Protein Microarray Validation


The 24 proteins identified as potential autoantigens (in All patients Vs HD) were used to print a focused protein microarray

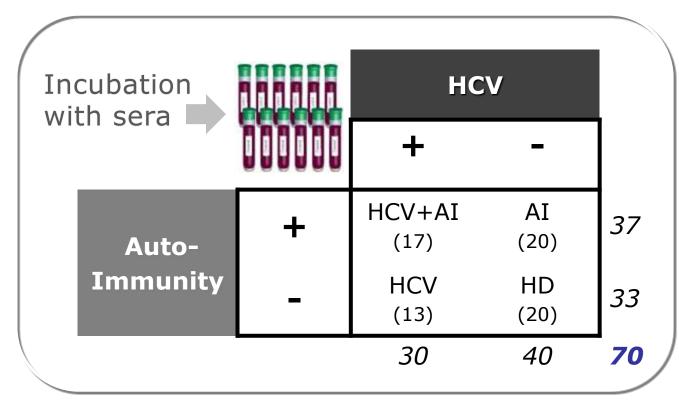

Heat map representations of sero-reactivity against the 17 auto-antigens in the three sera groups



17/24 proteins display significant autoreactivity when comparing Autoimmune (AI) with HCV (\pm /-Cryo) patients or with HD

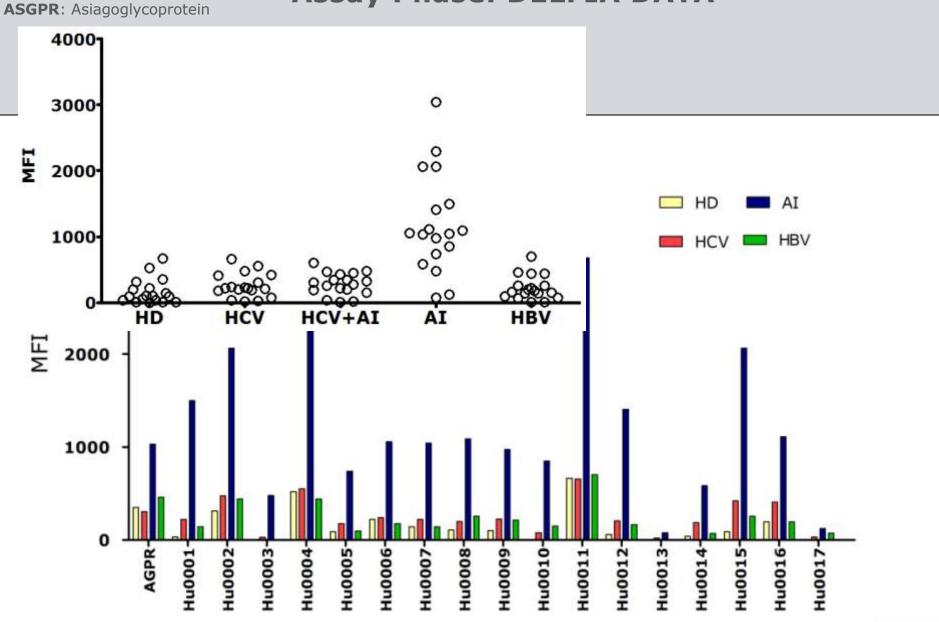
- (a) AI vs HCV
- (b) Al vs HD

First International Course of Translational Hepatology, Florence, 2011


VALIDATION OF THE 17 AUTO-ANTIGENS WITH NEW SERA PANELS OF PATIENTS FROM DIFFERENT CENTERS ASSESSED WITH A DIFFERENT ASSAY

DELFIA (fluorescent ELISA)

Additional control Proteins:


ASGR-1 CYP2D6

Additional controls sera: HBV (N = 10)

Assay Phase: DELFIA DATA

DELFIA: Statistical Analyses

Newman-Keuls Multiple	
Comparison Test	P < 0.05
HD vs Al	Yes
HD vs HCV+AI	No
HD vs HCV	No
HD vs HBV	No
HBV vs Al	Yes
HBV vs HCV+AI	No
HBV vs HCV	No
HCV vs Al	Yes
HCV vs HCV+AI	No
HCV+AI vs AI	Yes

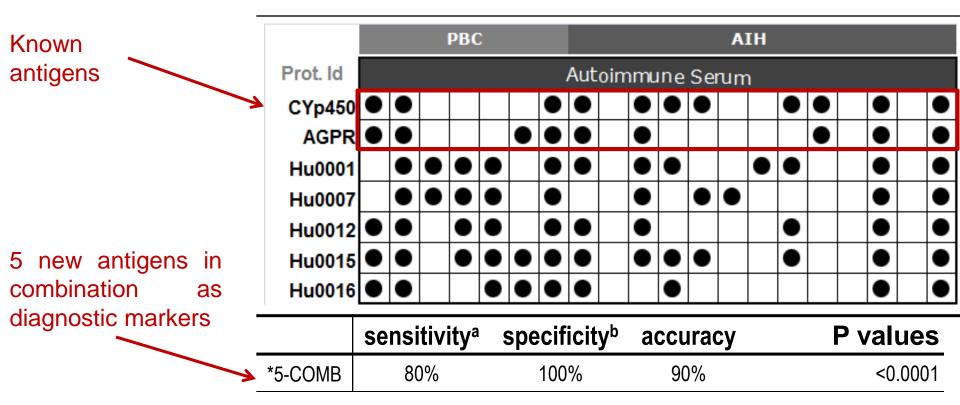
Five new candidates antigens showed sensitivity value for the autoimmune samples that ranged from 45% to 65%

Prot. Id	sensitivity ^a	Specificity ^b (HD)	Specificity (HCV)	Specificity (HBV)	Accuracy _{HD}	*P values
Hu0001	60%	100%	97%	100%	79%	< 0.0001
Hu0007	50%	100%	100%	100%	74%	0.0004
Hu0012	50%	100%	100%	100%	74%	0.0004
Hu0015	65%	100%	97%	100%	82%	< 0.0001
Hu0016	45%	100%	97%	100%	72%	0.0012
CYP2D6	58%	94%	75%	89%	82%	< 0.0001
AGPR-1	45%	95%	93%	80%	69%	0.0084

⁽a) Sensitivity is defined as % of positive autoimmune patients.

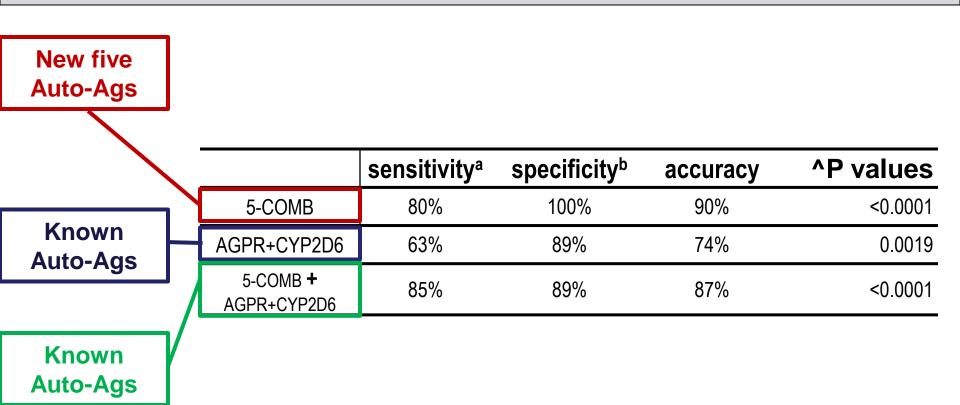
⁽b) Specificity is defined as % of negative healthy donors.

^{*}P values of autoimmune patients *versus* healthy calculated with χ 2 test.


Is there room for a diagnostic application?

		HCV+AI																							
Prot. Id								HCV																	
CYp450	•	•			lacktriangle								•			•									
AGPR			•																						
Hu0001																									
Hu0007					'				\square'																
Hu0012					'																				
Hu0015							lacktriangle																		
Hu0016				\Box																					

	PBC AIH																																			
Prot. Id	Autoimmune Serum													Healthy																						
CYp450	•	•					•	•		•	•	•			•	•	•		lacktriangle																	
AGPR	•					•	•	•		•						•	•														•					
Hu0001		•	•	•	•		•	•		•	•			•	•		•		•																	\Box
Hu0007		•	•	•	•		•			•		•	•				•		lacktriangle																	
Hu0012	•	•		•	•		•	•		•					•		•		lacktriangle																	\neg
Hu0015	_	•		•	•	•	•	•		•	•	•			•		•		•																	\neg
Hu0016		•			•	•	•	•			•						•		•																	


SEROLOGY WITH COMBINATION OF THE FIVE AUTO-ANTIGENS IDENTIFIES 80% OF PATIENTS WITH AIH OR PBC With Comparable sensitivity of the five antigens for AIH and PBC

Combo serology:

Little advantage in adding AGPR and CYP2D6 to the five new autoantigens

⁽a) Sensitivity is defined as % of positive autoimmune patients.

⁽b) Specificity is defined as % of negative healthy donors.

[^]P values of autoimmune patients *versus* healthy calculated with χ 2 test.

CONCLUSIONS

- ❖ A panel of 17 (poorly known) potential novel autoantigens identified in patients with liver autoimmune diseases (AIH & PBC) by protein array
- ❖ 5 of the 17 novel autoantigens validated in patients with liver autoimmune diseases with individual sensitivities that ranged from 45% to 65% by DELFIA method. The combined assessment of the five autoantigens displays 80% sensitivity and 100% specificity
- ❖ Comparable sensitivity of the five antigens for AIH and PBC, so apparently these are markers of liver autoimmunity
- ❖ Superior Sensitivity and Specificity (Vs HD, HCV and HBV) compared to benchmarks (CYP2D6, NP & ASGPR)
- ❖ Protein Microarray technology has the potential to rapidly identify new biomarkers useful to improve the diagnosis and/or prognosis of autoimmune diseases, and at the same time to identify new pathogenetic proteins

IN PROGRESS

Characterisation of the five new auto-antigens: <u>distribution</u>, <u>structure and putative functions (possible pathogenetic role)</u>. Now, they are poorly known gene products, simply annotated as ORFs.

These new autoantigens could be readily applied for "real-life" use in diagnosis and/or prognosis of AIH and PBC

Confirm with Delfia assay the value of the 17 newly identified markers of liver autoimmunity in other liver diseases (e.g., PSC)

Protein microarray technology used to identify novel proteins that are target of auto-antibodies in other diseases of interest (not necessarily autoimmune)

Acknowledgments

F. B. Bianchi, M. Lenzi, P. Muratori, L. Muratori Università di Bologna, Policlinico S. Orsola-Malpighi, Bologna

F. Bonino, P. Colombatto Osp. Cisanello, Pisa

M. Marconi

Policlinico Ospedale Maggiore,
Centro Trasfusionale, Milano

A.L. Zignego Università di Firenze

<u>INGM</u>

Proteomic lab

Chiara Zingaretti Angela Cardaci Milena Arigò

Mauro Bombaci

Virology Dept
R De Francesco

